diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Complex_Analysis_Basics.thy --- a/src/HOL/Analysis/Complex_Analysis_Basics.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Complex_Analysis_Basics.thy Tue Mar 31 15:51:15 2020 +0200 @@ -489,7 +489,7 @@ lemma analytic_on_sum [analytic_intros]: "(\i. i \ I \ (f i) analytic_on S) \ (\x. sum (\i. f i x) I) analytic_on S" - by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_const analytic_on_add) + by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_add) lemma deriv_left_inverse: assumes "f holomorphic_on S" and "g holomorphic_on T" @@ -579,11 +579,11 @@ lemma deriv_cmult_at: "f analytic_on {z} \ deriv (\w. c * f w) z = c * deriv f z" -by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const) +by (auto simp: complex_derivative_mult_at) lemma deriv_cmult_right_at: "f analytic_on {z} \ deriv (\w. f w * c) z = deriv f z * c" -by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const) +by (auto simp: complex_derivative_mult_at) subsection\<^marker>\tag unimportant\\Complex differentiation of sequences and series\ @@ -758,7 +758,7 @@ apply (rule field_differentiable_bound [where f' = "\w. f (Suc n) w * (z - w)^n / (fact n)" and S = "closed_segment w z", OF convex_closed_segment]) - apply (auto simp: ends_in_segment DERIV_subset [OF sum_deriv wzs] + apply (auto simp: DERIV_subset [OF sum_deriv wzs] norm_divide norm_mult norm_power divide_le_cancel cmod_bound) done also have "... \ B * norm (z - w) ^ Suc n / (fact n)"