diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Complex_Transcendental.thy --- a/src/HOL/Analysis/Complex_Transcendental.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Complex_Transcendental.thy Tue Mar 31 15:51:15 2020 +0200 @@ -612,7 +612,7 @@ apply (simp add: cos_add cmod_power2 cos_of_real sin_of_real Complex_eq) apply (simp add: cos_exp_eq sin_exp_eq exp_minus exp_of_real Re_divide Im_divide power_divide) apply (simp only: left_diff_distrib [symmetric] power_mult_distrib sin_squared_eq) - apply (simp add: power2_eq_square algebra_simps field_split_simps) + apply (simp add: power2_eq_square field_split_simps) done lemma norm_sin_squared: @@ -621,7 +621,7 @@ apply (simp add: sin_add cmod_power2 cos_of_real sin_of_real cos_double_cos exp_double Complex_eq) apply (simp add: cos_exp_eq sin_exp_eq exp_minus exp_of_real Re_divide Im_divide power_divide) apply (simp only: left_diff_distrib [symmetric] power_mult_distrib cos_squared_eq) - apply (simp add: power2_eq_square algebra_simps field_split_simps) + apply (simp add: power2_eq_square field_split_simps) done lemma exp_uminus_Im: "exp (- Im z) \ exp (cmod z)" @@ -1102,7 +1102,7 @@ by auto lemma Arg2pi_cnj_eq_inverse: "z\0 \ Arg2pi (cnj z) = Arg2pi (inverse z)" - apply (simp add: Arg2pi_eq_iff field_split_simps complex_norm_square [symmetric] mult.commute) + apply (simp add: Arg2pi_eq_iff field_split_simps complex_norm_square [symmetric]) by (metis of_real_power zero_less_norm_iff zero_less_power) lemma Arg2pi_cnj: "Arg2pi(cnj z) = (if z \ \ then Arg2pi z else 2*pi - Arg2pi z)" @@ -1946,7 +1946,7 @@ by (metis Arg_eq_0 Arg_inverse inverse_inverse_eq) lemma Arg_cnj_eq_inverse: "z\0 \ Arg (cnj z) = Arg (inverse z)" - apply (simp add: Arg_eq_iff field_split_simps complex_norm_square [symmetric] mult.commute) + apply (simp add: Arg_eq_iff field_split_simps complex_norm_square [symmetric]) by (metis of_real_power zero_less_norm_iff zero_less_power) lemma Arg_cnj: "Arg(cnj z) = (if z \ \ then Arg z else - Arg z)" @@ -2936,7 +2936,7 @@ unfolding Arctan_def scaleR_conv_of_real apply (intro derivative_eq_intros | simp add: nz0 *)+ using nz0 nz1 zz - apply (simp add: algebra_simps field_split_simps power2_eq_square) + apply (simp add: field_split_simps power2_eq_square) apply algebra done qed @@ -3014,7 +3014,7 @@ have "\c. \u\ball 0 1. Arctan u - G u = c" proof (rule has_field_derivative_zero_constant) fix u :: complex assume "u \ ball 0 1" - hence u: "norm u < 1" by (simp add: dist_0_norm) + hence u: "norm u < 1" by (simp) define K where "K = (norm u + 1) / 2" from u and abs_Im_le_cmod[of u] have Im_u: "\Im u\ < 1" by linarith from u have K: "0 \ K" "norm u < K" "K < 1" by (simp_all add: K_def) @@ -3634,7 +3634,7 @@ assumes "z\<^sup>2 \ 1" shows "cos(Arcsin z) \ 0" proof - have eq: "(\ * z * (csqrt (1 - z\<^sup>2)))\<^sup>2 = z\<^sup>2 * (z\<^sup>2 - 1)" - by (simp add: power_mult_distrib algebra_simps) + by (simp add: algebra_simps) have "\ * z * (csqrt (1 - z\<^sup>2)) \ z\<^sup>2 - 1" proof assume "\ * z * (csqrt (1 - z\<^sup>2)) = z\<^sup>2 - 1" @@ -3665,7 +3665,7 @@ assumes "z\<^sup>2 \ 1" shows "sin(Arccos z) \ 0" proof - have eq: "(\ * z * (csqrt (1 - z\<^sup>2)))\<^sup>2 = -(z\<^sup>2) * (1 - z\<^sup>2)" - by (simp add: power_mult_distrib algebra_simps) + by (simp add: algebra_simps) have "\ * z * (csqrt (1 - z\<^sup>2)) \ 1 - z\<^sup>2" proof assume "\ * z * (csqrt (1 - z\<^sup>2)) = 1 - z\<^sup>2" @@ -3971,7 +3971,7 @@ shows "exp(2 * of_real pi * \ * of_nat j / of_nat n)^n = 1" proof - have *: "of_nat j * (complex_of_real pi * 2) = complex_of_real (2 * real j * pi)" - by (simp add: of_real_numeral) + by (simp) then show ?thesis apply (simp add: exp_of_nat_mult [symmetric] mult_ac exp_Euler) apply (simp only: * cos_of_real sin_of_real) @@ -4006,7 +4006,7 @@ note * = this show ?thesis using assms - by (simp add: exp_eq field_split_simps mult_ac of_real_numeral *) + by (simp add: exp_eq field_split_simps *) qed corollary bij_betw_roots_unity: