diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Equivalence_Measurable_On_Borel.thy --- a/src/HOL/Analysis/Equivalence_Measurable_On_Borel.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Equivalence_Measurable_On_Borel.thy Tue Mar 31 15:51:15 2020 +0200 @@ -742,7 +742,7 @@ show "continuous_on UNIV (g \ (\ n))" for n :: nat unfolding \_def apply (intro continuous_on_compose2 [OF contg] continuous_intros conth) - apply (auto simp: aibi * mem_box less_max_iff_disj min_less_iff_disj algebra_simps field_split_simps) + apply (auto simp: aibi * mem_box less_max_iff_disj min_less_iff_disj field_split_simps) done show "(\n. (g \ \ n) x) \ g (f x)" if "x \ N" for x