diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Function_Topology.thy --- a/src/HOL/Analysis/Function_Topology.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Function_Topology.thy Tue Mar 31 15:51:15 2020 +0200 @@ -198,7 +198,7 @@ have "(\\<^sub>E i\I. topspace (T i)) \ {(\\<^sub>E i\I. X i) |X. (\i. openin (T i) (X i)) \ finite {i. X i \ topspace (T i)}}" using openin_topspace not_finite_existsD by auto then show "(\\<^sub>E i\I. topspace (T i)) \ topspace (product_topology T I)" - unfolding product_topology_def using PiE_def by (auto simp add: topology_generated_by_topspace) + unfolding product_topology_def using PiE_def by (auto) qed lemma product_topology_basis: