diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Weierstrass_Theorems.thy --- a/src/HOL/Analysis/Weierstrass_Theorems.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Weierstrass_Theorems.thy Tue Mar 31 15:51:15 2020 +0200 @@ -110,7 +110,7 @@ then have "(\k\n. (k - n * x)\<^sup>2 * Bernstein n k x)/n^2 = x * (1 - x) / n" by (simp add: power2_eq_square) then show ?thesis - using n by (simp add: sum_divide_distrib field_split_simps mult.commute power2_commute) + using n by (simp add: sum_divide_distrib field_split_simps power2_commute) qed { fix k assume k: "k \ n" @@ -158,7 +158,7 @@ also have "... < e" apply (simp add: field_simps) using \d>0\ nbig e \n>0\ - apply (simp add: field_split_simps algebra_simps) + apply (simp add: field_split_simps) using ed0 by linarith finally have "\f x - (\k\n. f (real k / real n) * Bernstein n k x)\ < e" . } @@ -576,7 +576,7 @@ define B where "B j = {x \ S. f x \ (j + 1/3)*e}" for j :: nat have ngt: "(n-1) * e \ normf f" "n\1" using e - apply (simp_all add: n_def field_simps of_nat_Suc) + apply (simp_all add: n_def field_simps) by (metis real_nat_ceiling_ge mult.commute not_less pos_less_divide_eq) then have ge_fx: "(n-1) * e \ f x" if "x \ S" for x using f normf_upper that by fastforce @@ -646,7 +646,7 @@ then have "t \ B i" using Anj e ge_fx [OF t] \1 \ n\ fpos [OF t] t apply (simp add: A_def B_def) - apply (clarsimp simp add: field_simps of_nat_diff not_le of_nat_Suc) + apply (clarsimp simp add: field_simps of_nat_diff not_le) apply (rule order_trans [of _ "e * 2 + (e * (real d * 3) + e * (real i * 3))"]) apply auto done @@ -693,7 +693,7 @@ apply simp apply (rule order_trans [OF _ sum_bounded_below [OF less_imp_le [OF ****]]]) using True - apply (simp_all add: of_nat_Suc of_nat_diff) + apply (simp_all add: of_nat_diff) done also have "... \ g t" using jn e @@ -744,7 +744,7 @@ have "\ real (Suc n) < inverse e" using \N \ n\ N using less_imp_inverse_less by force then have "1 / (1 + real n) \ e" - using e by (simp add: field_simps of_nat_Suc) + using e by (simp add: field_simps) then have "\f x - g x\ < e" using n(2) x by auto } note * = this @@ -927,7 +927,7 @@ show ?case apply (rule_tac x="\i. c" in exI) apply (rule_tac x=0 in exI) - apply (auto simp: mult_ac of_nat_Suc) + apply (auto simp: mult_ac) done case (add f1 f2) then obtain a1 n1 a2 n2 where @@ -1328,7 +1328,7 @@ also have "... = (\j\B. if j = i then x \ i else 0)" by (rule sum.cong; simp) also have "... = i \ x" - by (simp add: \finite B\ that inner_commute sum.delta) + by (simp add: \finite B\ that inner_commute) finally show ?thesis . qed qed