diff -r f8595f6d39a5 -r 07c35dec9dac src/HOL/Complex.thy --- a/src/HOL/Complex.thy Sun Sep 17 18:56:35 2023 +0100 +++ b/src/HOL/Complex.thy Sat Sep 23 18:45:19 2023 +0100 @@ -464,6 +464,10 @@ lemmas Re_suminf = bounded_linear.suminf[OF bounded_linear_Re] lemmas Im_suminf = bounded_linear.suminf[OF bounded_linear_Im] +lemma continuous_on_Complex [continuous_intros]: + "continuous_on A f \ continuous_on A g \ continuous_on A (\x. Complex (f x) (g x))" + unfolding Complex_eq by (intro continuous_intros) + lemma tendsto_Complex [tendsto_intros]: "(f \ a) F \ (g \ b) F \ ((\x. Complex (f x) (g x)) \ Complex a b) F" unfolding Complex_eq by (auto intro!: tendsto_intros) @@ -872,9 +876,6 @@ lemma i_not_in_Reals [simp, intro]: "\ \ \" by (auto simp: complex_is_Real_iff) -lemma powr_power_complex: "z \ 0 \ n \ 0 \ (z powr u :: complex) ^ n = z powr (of_nat n * u)" - by (induction n) (auto simp: algebra_simps powr_add) - lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re (cis a ^ n)" by (auto simp add: DeMoivre)