diff -r a27b48967b26 -r 07dbdf60d5ad src/HOL/Multivariate_Analysis/Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Mon Feb 08 14:22:22 2010 +0100 +++ b/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Mon Feb 08 14:22:22 2010 +0100 @@ -836,7 +836,7 @@ lemma dot_rneg: "(x::'a::ring ^ 'n) \ (-y) = -(x \ y)" by vector lemma dot_lzero[simp]: "0 \ x = (0::'a::{comm_monoid_add, mult_zero})" by vector lemma dot_rzero[simp]: "x \ 0 = (0::'a::{comm_monoid_add, mult_zero})" by vector -lemma dot_pos_le[simp]: "(0::'a\linlinordered_ring_strict) <= x \ x" +lemma dot_pos_le[simp]: "(0::'a\linordered_ring_strict) <= x \ x" by (simp add: dot_def setsum_nonneg) lemma setsum_squares_eq_0_iff: assumes fS: "finite F" and fp: "\x \ F. f x \ (0 ::'a::ordered_ab_group_add)" shows "setsum f F = 0 \ (ALL x:F. f x = 0)" @@ -852,10 +852,10 @@ show ?case by (simp add: h) qed -lemma dot_eq_0: "x \ x = 0 \ (x::'a::{linlinordered_ring_strict,ring_no_zero_divisors} ^ 'n) = 0" +lemma dot_eq_0: "x \ x = 0 \ (x::'a::{linordered_ring_strict,ring_no_zero_divisors} ^ 'n) = 0" by (simp add: dot_def setsum_squares_eq_0_iff Cart_eq) -lemma dot_pos_lt[simp]: "(0 < x \ x) \ (x::'a::{linlinordered_ring_strict,ring_no_zero_divisors} ^ 'n) \ 0" using dot_eq_0[of x] dot_pos_le[of x] +lemma dot_pos_lt[simp]: "(0 < x \ x) \ (x::'a::{linordered_ring_strict,ring_no_zero_divisors} ^ 'n) \ 0" using dot_eq_0[of x] dot_pos_le[of x] by (auto simp add: le_less) subsection{* The collapse of the general concepts to dimension one. *}