diff -r 143f58bb34f9 -r 0909deb8059b src/HOL/Algebra/QuotRing.thy --- a/src/HOL/Algebra/QuotRing.thy Thu May 26 16:57:14 2016 +0200 +++ b/src/HOL/Algebra/QuotRing.thy Thu May 26 17:51:22 2016 +0200 @@ -84,28 +84,28 @@ text \The quotient is a ring\ lemma (in ideal) quotient_is_ring: "ring (R Quot I)" apply (rule ringI) - --\abelian group\ + \\abelian group\ apply (rule comm_group_abelian_groupI) apply (simp add: FactRing_def) apply (rule a_factorgroup_is_comm_group[unfolded A_FactGroup_def']) - --\mult monoid\ + \\mult monoid\ apply (rule monoidI) apply (simp_all add: FactRing_def A_RCOSETS_def RCOSETS_def a_r_coset_def[symmetric]) - --\mult closed\ + \\mult closed\ apply (clarify) apply (simp add: rcoset_mult_add, fast) - --\mult @{text one_closed}\ + \\mult \one_closed\\ apply force - --\mult assoc\ + \\mult assoc\ apply clarify apply (simp add: rcoset_mult_add m_assoc) - --\mult one\ + \\mult one\ apply clarify apply (simp add: rcoset_mult_add) apply clarify apply (simp add: rcoset_mult_add) - --\distr\ + \\distr\ apply clarify apply (simp add: rcoset_mult_add a_rcos_sum l_distr) apply clarify @@ -225,7 +225,7 @@ apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric], clarsimp) apply (simp add: rcoset_mult_add) defer 1 proof (rule ccontr, simp) - --\Quotient is not empty\ + \\Quotient is not empty\ assume "\\<^bsub>R Quot I\<^esub> = \\<^bsub>R Quot I\<^esub>" then have II1: "I = I +> \" by (simp add: FactRing_def) from a_rcos_self[OF one_closed] have "\ \ I" @@ -233,11 +233,11 @@ then have "I = carrier R" by (rule one_imp_carrier) with I_notcarr show False by simp next - --\Existence of Inverse\ + \\Existence of Inverse\ fix a assume IanI: "I +> a \ I" and acarr: "a \ carrier R" - --\Helper ideal @{text "J"}\ + \\Helper ideal \J\\ define J :: "'a set" where "J = (carrier R #> a) <+> I" have idealJ: "ideal J R" apply (unfold J_def, rule add_ideals) @@ -245,7 +245,7 @@ apply (rule is_ideal) done - --\Showing @{term "J"} not smaller than @{term "I"}\ + \\Showing @{term "J"} not smaller than @{term "I"}\ have IinJ: "I \ J" proof (rule, simp add: J_def r_coset_def set_add_defs) fix x @@ -256,7 +256,7 @@ with Zcarr and xI show "\xa\carrier R. \k\I. x = xa \ a \ k" by fast qed - --\Showing @{term "J \ I"}\ + \\Showing @{term "J \ I"}\ have anI: "a \ I" proof (rule ccontr, simp) assume "a \ I" @@ -274,7 +274,7 @@ from aJ and anI have JnI: "J \ I" by fast - --\Deducing @{term "J = carrier R"} because @{term "I"} is maximal\ + \\Deducing @{term "J = carrier R"} because @{term "I"} is maximal\ from idealJ and IinJ have "J = I \ J = carrier R" proof (rule I_maximal, unfold J_def) have "carrier R #> a \ carrier R" @@ -285,7 +285,7 @@ with JnI have Jcarr: "J = carrier R" by simp - --\Calculating an inverse for @{term "a"}\ + \\Calculating an inverse for @{term "a"}\ from one_closed[folded Jcarr] have "\r\carrier R. \i\I. \ = r \ a \ i" by (simp add: J_def r_coset_def set_add_defs) @@ -294,7 +294,7 @@ from one and rcarr and acarr and iI[THEN a_Hcarr] have rai1: "a \ r = \i \ \" by algebra - --\Lifting to cosets\ + \\Lifting to cosets\ from iI have "\i \ \ \ I +> \" by (intro a_rcosI, simp, intro a_subset, simp) with rai1 have "a \ r \ I +> \" by simp