diff -r 143f58bb34f9 -r 0909deb8059b src/HOL/Metis_Examples/Binary_Tree.thy --- a/src/HOL/Metis_Examples/Binary_Tree.thy Thu May 26 16:57:14 2016 +0200 +++ b/src/HOL/Metis_Examples/Binary_Tree.thy Thu May 26 17:51:22 2016 +0200 @@ -5,7 +5,7 @@ Metis example featuring binary trees. *) -section {* Metis Example Featuring Binary Trees *} +section \Metis Example Featuring Binary Trees\ theory Binary_Tree imports Main @@ -53,7 +53,7 @@ "append Lf t = t" | "append (Br a t1 t2) t = Br a (append t1 t) (append t2 t)" -text {* \medskip BT simplification *} +text \\medskip BT simplification\ lemma n_leaves_reflect: "n_leaves (reflect t) = n_leaves t" proof (induct t) @@ -82,9 +82,9 @@ apply (metis depth.simps(1) reflect.simps(1)) by (metis depth.simps(2) max.commute reflect.simps(2)) -text {* +text \ The famous relationship between the numbers of leaves and nodes. -*} +\ lemma n_leaves_nodes: "n_leaves t = Suc (n_nodes t)" apply (induct t) @@ -197,9 +197,9 @@ reflect.simps(1)) by (metis preorder_reflect reflect_reflect_ident rev_swap) -text {* +text \ Analogues of the standard properties of the append function for lists. -*} +\ lemma append_assoc [simp]: "append (append t1 t2) t3 = append t1 (append t2 t3)" apply (induct t1)