diff -r 143f58bb34f9 -r 0909deb8059b src/HOL/Nominal/Examples/Class2.thy --- a/src/HOL/Nominal/Examples/Class2.thy Thu May 26 16:57:14 2016 +0200 +++ b/src/HOL/Nominal/Examples/Class2.thy Thu May 26 17:51:22 2016 +0200 @@ -2,7 +2,7 @@ imports Class1 begin -text {* Reduction *} +text \Reduction\ lemma fin_not_Cut: assumes a: "fin M x" @@ -1821,9 +1821,9 @@ apply(auto) done -text {* Candidates and SN *} +text \Candidates and SN\ -text {* SNa *} +text \SNa\ inductive SNa :: "trm \ bool" @@ -2091,7 +2091,7 @@ apply(perm_simp) done -text {* set operators *} +text \set operators\ definition AXIOMSn :: "ty \ ntrm set" where "AXIOMSn B \ { (x):(Ax y b) | x y b. True }" @@ -2873,7 +2873,7 @@ apply(simp_all) done -text {* Candidates *} +text \Candidates\ lemma test1: shows "x\(X\Y) = (x\X \ x\Y)" @@ -3447,7 +3447,7 @@ } qed -text {* Elimination rules for the set-operators *} +text \Elimination rules for the set-operators\ lemma BINDINGc_elim: assumes a: ":M \ BINDINGc B (\(B)\)" @@ -5178,7 +5178,7 @@ apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt) done -text {* Main lemma 1 *} +text \Main lemma 1\ lemma AXIOMS_imply_SNa: shows ":M \ AXIOMSc B \ SNa M" @@ -5484,7 +5484,7 @@ } qed -text {* Main lemma 2 *} +text \Main lemma 2\ lemma AXIOMS_preserved: shows ":M \ AXIOMSc B \ M \\<^sub>a* M' \ :M' \ AXIOMSc B"