diff -r 143f58bb34f9 -r 0909deb8059b src/HOL/TPTP/TPTP_Proof_Reconstruction_Test_Units.thy --- a/src/HOL/TPTP/TPTP_Proof_Reconstruction_Test_Units.thy Thu May 26 16:57:14 2016 +0200 +++ b/src/HOL/TPTP/TPTP_Proof_Reconstruction_Test_Units.thy Thu May 26 17:51:22 2016 +0200 @@ -13,13 +13,13 @@ declare [[tptp_trace_reconstruction = true]] lemma "! (X1 :: bool) (X2 :: bool) (X3 :: bool) (X4 :: bool) (X5 :: bool). P \ ! (X1 :: bool) (X3 :: bool) (X5 :: bool). P" -apply (tactic {*canonicalise_qtfr_order @{context} 1*}) +apply (tactic \canonicalise_qtfr_order @{context} 1\) oops lemma "! (X1 :: bool) (X2 :: bool) (X3 :: bool) (X4 :: bool) (X5 :: bool). P \ ! (X1 :: bool) (X3 :: bool) (X5 :: bool). P" -apply (tactic {*canonicalise_qtfr_order @{context} 1*}) +apply (tactic \canonicalise_qtfr_order @{context} 1\) apply (rule allI)+ -apply (tactic {*nominal_inst_parametermatch_tac @{context} @{thm allE} 1*})+ +apply (tactic \nominal_inst_parametermatch_tac @{context} @{thm allE} 1\)+ oops (*Could test bind_tac further with NUM667^1 inode43*) @@ -187,35 +187,35 @@ lemma "(A = B) = True ==> (B = A) = True" *) lemma "!!x. ((A x :: bool) = B x) = False ==> (B x = A x) = False" -apply (tactic {*expander_animal @{context} 1*}) +apply (tactic \expander_animal @{context} 1\) oops lemma "(A & B) ==> ~(~A | ~B)" -by (tactic {*expander_animal @{context} 1*}) +by (tactic \expander_animal @{context} 1\) lemma "(A | B) ==> ~(~A & ~B)" -by (tactic {*expander_animal @{context} 1*}) +by (tactic \expander_animal @{context} 1\) lemma "(A | B) | C ==> A | (B | C)" -by (tactic {*expander_animal @{context} 1*}) +by (tactic \expander_animal @{context} 1\) lemma "(~~A) = B ==> A = B" -by (tactic {*expander_animal @{context} 1*}) +by (tactic \expander_animal @{context} 1\) lemma "~ ~ (A = True) ==> A = True" -by (tactic {*expander_animal @{context} 1*}) +by (tactic \expander_animal @{context} 1\) (*This might not be a goal which might realistically arise: lemma "((~~A) = B) & (B = (~~A)) ==> ~(~(A = B) | ~(B = A))" *) lemma "((~~A) = True) ==> ~(~(A = True) | ~(True = A))" -apply (tactic {*expander_animal @{context} 1*})+ +apply (tactic \expander_animal @{context} 1\)+ apply (rule conjI) apply assumption apply (rule sym, assumption) done lemma "A = B ==> ((~~A) = B) & (B = (~~A)) ==> ~(~(A = B) | ~(B = A))" -by (tactic {*expander_animal @{context} 1*})+ +by (tactic \expander_animal @{context} 1\)+ (*some lemmas assume constants in the signature of PUZ114^5*) consts @@ -242,7 +242,7 @@ SY30 (PUZ114_5_bnd_s Xj) (PUZ114_5_bnd_s Xk))) | SY30 PUZ114_5_bnd_sK1 PUZ114_5_bnd_sK2 )" -by (tactic {*expander_animal @{context} 1*})+ +by (tactic \expander_animal @{context} 1\)+ (* extcnf_forall_pos: @@ -262,8 +262,8 @@ (where X' is fresh, or renamings are done suitably).*) lemma "A | B \ A | B | C" -apply (tactic {*flip_conclusion_tac @{context} 1*})+ -apply (tactic {*break_hypotheses 1*})+ +apply (tactic \flip_conclusion_tac @{context} 1\)+ +apply (tactic \break_hypotheses 1\)+ oops consts @@ -297,7 +297,7 @@ True) = False" apply (rule allI, erule_tac x = "SV2" in allE) -apply (tactic {*extuni_dec_tac @{context} 1*}) +apply (tactic \extuni_dec_tac @{context} 1\) done (*SEU882^5*) @@ -330,12 +330,12 @@ lemma "A | B \ C1 | A | C2 | B | C3" apply (erule disjE) -apply (tactic {*clause_breaker 1*}) -apply (tactic {*clause_breaker 1*}) +apply (tactic \clause_breaker 1\) +apply (tactic \clause_breaker 1\) done lemma "A \ A" -apply (tactic {*clause_breaker 1*}) +apply (tactic \clause_breaker 1\) done typedecl NUM667_1_bnd_nat @@ -359,15 +359,15 @@ NUM667_1_bnd_less SV9 SV10 = True) \ (SV9 = SV11) = False" -apply (tactic {*strip_qtfrs_tac @{context}*}) -apply (tactic {*break_hypotheses 1*}) -apply (tactic {*ALLGOALS (TRY o clause_breaker)*}) -apply (tactic {*extuni_dec_tac @{context} 1*}) +apply (tactic \strip_qtfrs_tac @{context}\) +apply (tactic \break_hypotheses 1\) +apply (tactic \ALLGOALS (TRY o clause_breaker)\) +apply (tactic \extuni_dec_tac @{context} 1\) done -ML {* +ML \ extuni_dec_n @{context} 2; -*} +\ (*NUM667^1, node 202*) lemma "\SV9 SV10 SV11. @@ -382,10 +382,10 @@ NUM667_1_bnd_less SV9 SV10 = True) \ NUM667_1_bnd_less NUM667_1_bnd_x NUM667_1_bnd_y = True" -apply (tactic {*strip_qtfrs_tac @{context}*}) -apply (tactic {*break_hypotheses 1*}) -apply (tactic {*ALLGOALS (TRY o clause_breaker)*}) -apply (tactic {*extuni_dec_tac @{context} 1*}) +apply (tactic \strip_qtfrs_tac @{context}\) +apply (tactic \break_hypotheses 1\) +apply (tactic \ALLGOALS (TRY o clause_breaker)\) +apply (tactic \extuni_dec_tac @{context} 1\) done (*NUM667^1 node 141*) @@ -400,7 +400,7 @@ done *) -ML {* +ML \ fun full_extcnf_combined_tac ctxt = extcnf_combined_tac ctxt NONE [ConstsDiff, @@ -418,9 +418,9 @@ CleanUp [RemoveHypothesesFromSkolemDefs, RemoveDuplicates], AbsorbSkolemDefs] [] -*} +\ -ML {* +ML \ fun nonfull_extcnf_combined_tac ctxt feats = extcnf_combined_tac ctxt NONE [ConstsDiff, @@ -428,7 +428,7 @@ InnerLoopOnce (Break_Hypotheses :: feats), AbsorbSkolemDefs] [] -*} +\ consts SEU882_5_bnd_sK1_Xy :: TPTP_Interpret.ind lemma @@ -437,7 +437,7 @@ (* apply (erule_tac x = "(@X. False)" in allE) *) (* apply (tactic {*remove_redundant_quantification 1*}) *) (* apply assumption *) -by (tactic {*nonfull_extcnf_combined_tac @{context} [RemoveRedundantQuantifications, Extuni_FlexRigid]*}) +by (tactic \nonfull_extcnf_combined_tac @{context} [RemoveRedundantQuantifications, Extuni_FlexRigid]\) (*NUM667^1*) (* @@ -472,7 +472,7 @@ (\ SEU602_2_bnd_in (SEU602_2_bnd_sK7_E SV49) SEU602_2_bnd_sK2_SY17)) = False" (*FIXME this (and similar) tests are getting the "Bad background theory of goal state" error since upgrading to Isabelle2013-2.*) -by (tactic {*nonfull_extcnf_combined_tac @{context} [Extuni_Func, Existential_Var]*}) +by (tactic \nonfull_extcnf_combined_tac @{context} [Extuni_Func, Existential_Var]\) consts SEV405_5_bnd_sK1_SY2 :: "(TPTP_Interpret.ind \ bool) \ TPTP_Interpret.ind" @@ -487,7 +487,7 @@ (\ (\ (\ SV1 (SEV405_5_bnd_sK1_SY2 SV1) \ SEV405_5_bnd_cA) \ \ (\ SEV405_5_bnd_cA \ SV1 (SEV405_5_bnd_sK1_SY2 SV1)))) = False" -by (tactic {*nonfull_extcnf_combined_tac @{context} [Existential_Var]*}) +by (tactic \nonfull_extcnf_combined_tac @{context} [Existential_Var]\) (* strip quantifiers -- creating a space of permutations; from shallowest to deepest (iterative deepening) flip the conclusion -- giving us branch @@ -503,38 +503,38 @@ (*testing parameters*) lemma "! X :: TPTP_Interpret.ind . (\A B. SEU581_2_bnd_in B (SEU581_2_bnd_powerset A) \ SEU581_2_bnd_subset B A) = True \ ! X :: TPTP_Interpret.ind . (\A B. \ SEU581_2_bnd_in B (SEU581_2_bnd_powerset A) \ SEU581_2_bnd_subset B A) = True" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) lemma "(A & B) = True ==> (A | B) = True" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) lemma "(\ bnd_subset (bnd_dsetconstr bnd_sK1 bnd_sK2) bnd_sK1) = True \ (bnd_subset (bnd_dsetconstr bnd_sK1 bnd_sK2) bnd_sK1) = False" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) (*testing goals with parameters*) lemma "(\ bnd_subset (bnd_dsetconstr bnd_sK1 bnd_sK2) bnd_sK1) = True \ ! X. (bnd_subset (bnd_dsetconstr bnd_sK1 bnd_sK2) bnd_sK1) = False" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) lemma "(A & B) = True ==> (B & A) = True" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) (*appreciating differences between THEN, REPEAT, and APPEND*) lemma "A & B ==> B & A" -apply (tactic {* +apply (tactic \ TRY (etac @{thm conjE} 1) - THEN TRY (rtac @{thm conjI} 1)*}) + THEN TRY (rtac @{thm conjI} 1)\) by assumption+ lemma "A & B ==> B & A" -by (tactic {* +by (tactic \ etac @{thm conjE} 1 THEN rtac @{thm conjI} 1 - THEN REPEAT (atac 1)*}) + THEN REPEAT (atac 1)\) lemma "A & B ==> B & A" -apply (tactic {* +apply (tactic \ rtac @{thm conjI} 1 - APPEND etac @{thm conjE} 1*})+ + APPEND etac @{thm conjE} 1\)+ back by assumption+ @@ -564,16 +564,16 @@ \ SV1 bnd_c1 bnd_c1) \ SV1 PUZ114_5_bnd_sK1 PUZ114_5_bnd_sK2) = True" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) lemma "(\ SEU581_2_bnd_subset (SEU581_2_bnd_dsetconstr SEU581_2_bnd_sK1 SEU581_2_bnd_sK2) SEU581_2_bnd_sK1) = True \ (SEU581_2_bnd_subset (SEU581_2_bnd_dsetconstr SEU581_2_bnd_sK1 SEU581_2_bnd_sK2) SEU581_2_bnd_sK1) = False" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) (*testing repeated application of simulator*) lemma "(\ \ False) = True \ SEU581_2_bnd_subset (SEU581_2_bnd_dsetconstr SEU581_2_bnd_sK1 SEU581_2_bnd_sK2) SEU581_2_bnd_sK1 = True \ False = True \ False = True \ False = True" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) (*Testing non-normal conclusion. Ideally we should be able to apply the tactic to arbitrary chains of extcnf steps -- where it's not @@ -581,48 +581,48 @@ lemma "(\ \ False) = True \ SEU581_2_bnd_subset (SEU581_2_bnd_dsetconstr SEU581_2_bnd_sK1 SEU581_2_bnd_sK2) SEU581_2_bnd_sK1 = True \ (\ False) = False" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) (*testing repeated application of simulator, involving different extcnf rules*) lemma "(\ \ (False | False)) = True \ SEU581_2_bnd_subset (SEU581_2_bnd_dsetconstr SEU581_2_bnd_sK1 SEU581_2_bnd_sK2) SEU581_2_bnd_sK1 = True \ False = True \ False = True \ False = True" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) (*testing logical expansion*) lemma "(\A B. SEU581_2_bnd_in B (SEU581_2_bnd_powerset A) \ SEU581_2_bnd_subset B A) = True \ (\A B. \ SEU581_2_bnd_in B (SEU581_2_bnd_powerset A) \ SEU581_2_bnd_subset B A) = True" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) (*testing extcnf_forall_pos*) lemma "(\A Xphi. SEU581_2_bnd_in (SEU581_2_bnd_dsetconstr A Xphi) (SEU581_2_bnd_powerset A)) = True \ \SV1. (\SY14. SEU581_2_bnd_in (SEU581_2_bnd_dsetconstr SV1 SY14) (SEU581_2_bnd_powerset SV1)) = True" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) lemma "((\A Xphi. SEU581_2_bnd_in (SEU581_2_bnd_dsetconstr A Xphi) (SEU581_2_bnd_powerset A)) = True) | ((~ False) = False) \ \SV1. ((\SY14. SEU581_2_bnd_in (SEU581_2_bnd_dsetconstr SV1 SY14) (SEU581_2_bnd_powerset SV1)) = True) | ((~ False) = False)" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) (*testing parameters*) lemma "(\A B. SEU581_2_bnd_in B (SEU581_2_bnd_powerset A) \ SEU581_2_bnd_subset B A) = True \ ! X. (\A B. \ SEU581_2_bnd_in B (SEU581_2_bnd_powerset A) \ SEU581_2_bnd_subset B A) = True" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) lemma "((? A .P1 A) = False) | P2 = True \ !X. ((P1 X) = False | P2 = True)" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) lemma "((!A . (P1a A | P1b A)) = True) | (P2 = True) \ !X. (P1a X = True | P1b X = True | P2 = True)" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) lemma "! Y. (((!A .(P1a A | P1b A)) = True) | P2 = True) \ ! Y. (!X. (P1a X = True | P1b X = True | P2 = True))" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) lemma "! Y. (((!A .(P1a A | P1b A)) = True) | P2 = True) \ ! Y. (!X. (P1a X = True | P1b X = True | P2 = True))" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) lemma "! Y. (((!A .(P1a A | P1b A)) = True) | P2 = True) \ ! Y. (!X. (P1a X = True | P1b X = True | P2 = True))" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) consts dud_bnd_s :: "TPTP_Interpret.ind \ TPTP_Interpret.ind" @@ -636,12 +636,12 @@ \ PUZ114_5_bnd_sK3 SX0 SX1 \ PUZ114_5_bnd_sK3 (dud_bnd_s SX0) (dud_bnd_s SX1))) = False" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) (*testing logical expansion -- this should be done by blast*) lemma "(\A B. bnd_in B (bnd_powerset A) \ SEU581_2_bnd_subset B A) = True \ (\A B. \ bnd_in B (bnd_powerset A) \ SEU581_2_bnd_subset B A) = True" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) (*testing related to PUZ114^5.p.out*) lemma "\SV1. ((\ (\ SV1 (PUZ114_5_bnd_sK4 SV1) (PUZ114_5_bnd_sK5 SV1) \ @@ -660,7 +660,7 @@ (bnd_s (PUZ114_5_bnd_sK5 SV1))))) = True) \ SV1 PUZ114_5_bnd_sK1 PUZ114_5_bnd_sK2 = True" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) lemma "\SV2. (\SY41. \ PUZ114_5_bnd_sK3 SV2 SY41 \ @@ -670,7 +670,7 @@ (\ PUZ114_5_bnd_sK3 SV2 SV4 \ PUZ114_5_bnd_sK3 (dud_bnd_s (dud_bnd_s SV2)) SV4) = True" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) lemma "\SV3. (\SY42. \ PUZ114_5_bnd_sK3 SV3 SY42 \ @@ -680,7 +680,7 @@ (\ PUZ114_5_bnd_sK3 SV3 SV5 \ PUZ114_5_bnd_sK3 (dud_bnd_s SV3) (dud_bnd_s SV5)) = True" -by (tactic {*full_extcnf_combined_tac @{context}*}) +by (tactic \full_extcnf_combined_tac @{context}\) subsection "unfold_def" @@ -749,7 +749,7 @@ (bnd_setadjoin (bnd_setadjoin SX2 (bnd_setadjoin SX3 bnd_emptyset)) bnd_emptyset))))))) = True" -by (tactic {*unfold_def_tac @{context} []*}) +by (tactic \unfold_def_tac @{context} []\) (* (Annotated_step ("10", "unfold_def"), *) lemma "bnd_kpairiskpair = @@ -817,7 +817,7 @@ (bnd_setadjoin (bnd_setadjoin SX2 (bnd_setadjoin SX3 bnd_emptyset)) bnd_emptyset)))))) = True" -by (tactic {*unfold_def_tac @{context} []*}) +by (tactic \unfold_def_tac @{context} []\) (* (Annotated_step ("12", "unfold_def"), *) lemma "bnd_cCKB6_BLACK = @@ -854,7 +854,7 @@ apply (tactic {*log_expander 1*})+ apply (rule refl) *) -by (tactic {*unfold_def_tac @{context} []*}) +by (tactic \unfold_def_tac @{context} []\) (* (Annotated_step ("13", "unfold_def"), *) lemma "bnd_cCKB6_BLACK = @@ -887,10 +887,10 @@ apply (tactic {*expander_animal 1*})+ apply assumption *) -by (tactic {*unfold_def_tac @{context} []*}) +by (tactic \unfold_def_tac @{context} []\) (*FIXME move this heuristic elsewhere*) -ML {* +ML \ (*Other than the list (which must not be empty) this function expects a parameter indicating the smallest integer. (Using Int.minInt isn't always viable).*) @@ -905,13 +905,13 @@ let val max = max_int_floored min l in find_index (pair max #> op =) l end -*} +\ -ML {* +ML \ max_index_floored 0 [1, 3, 5] -*} +\ -ML {* +ML \ (* Given argument ([h_1, ..., h_n], conc), obtained from term of form @@ -925,9 +925,9 @@ map size_of_term hypos |> max_index_floored 0 |> SOME -*} +\ -ML {* +ML \ fun biggest_hyp_first_tac i = fn st => let val results = TERMFUN biggest_hypothesis (SOME i) st @@ -944,7 +944,7 @@ if n > 0 then rotate_tac n i st else no_tac st end end -*} +\ (* (Annotated_step ("6", "unfold_def"), *) lemma "(\ (\U :: TPTP_Interpret.ind \ bool. \V. U V = SEV405_5_bnd_cA)) = True \ @@ -1006,7 +1006,7 @@ GEG007_1_bnd_c (GEG007_1_bnd_sK7_SX2 SV13 SV6) GEG007_1_bnd_catalunya) = False \ GEG007_1_bnd_a SV6 SV13 = False" -by (tactic {*nonfull_extcnf_combined_tac @{context} [Existential_Var]*}) +by (tactic \nonfull_extcnf_combined_tac @{context} [Existential_Var]\) (* (Annotated_step ("116", "extcnf_forall_neg"), *) lemma "\SV13 SV6. @@ -1039,7 +1039,7 @@ \ (\SX4. \ GEG007_1_bnd_c SX4 SY71 \ GEG007_1_bnd_c SX4 GEG007_1_bnd_spain)))))) = False \ GEG007_1_bnd_a SV6 SV13 = False" -by (tactic {*nonfull_extcnf_combined_tac @{context} [Existential_Var]*}) +by (tactic \nonfull_extcnf_combined_tac @{context} [Existential_Var]\) consts PUZ107_5_bnd_sK1_SX0 :: "TPTP_Interpret.ind @@ -1056,7 +1056,7 @@ (SV3::TPTP_Interpret.ind) SV1::TPTP_Interpret.ind. ((SV1 = SV3) = True \ PUZ107_5_bnd_sK1_SX0 SV1 SV2 SV6 SV8 = False) \ PUZ107_5_bnd_sK1_SX0 SV3 SV4 SV6 SV8 = False" -by (tactic {*nonfull_extcnf_combined_tac @{context} [Not_neg]*}) +by (tactic \nonfull_extcnf_combined_tac @{context} [Not_neg]\) lemma " \(SV8::TPTP_Interpret.ind) (SV6::TPTP_Interpret.ind) @@ -1070,7 +1070,7 @@ (SV3::TPTP_Interpret.ind) SV1::TPTP_Interpret.ind. ((SV1 \ SV3) = False \ PUZ107_5_bnd_sK1_SX0 SV1 SV2 SV6 SV8 = False) \ PUZ107_5_bnd_sK1_SX0 SV3 SV4 SV6 SV8 = False" -by (tactic {*nonfull_extcnf_combined_tac @{context} [Or_neg]*}) +by (tactic \nonfull_extcnf_combined_tac @{context} [Or_neg]\) consts NUM016_5_bnd_a :: TPTP_Interpret.ind @@ -1149,7 +1149,7 @@ NUM016_5_bnd_less (NUM016_5_bnd_factorial_plus_one NUM016_5_bnd_a) SX0))) = True" -by (tactic {*unfold_def_tac @{context} []*}) +by (tactic \unfold_def_tac @{context} []\) (* (Annotated_step ("3", "unfold_def"), *) lemma "(~ ((((((((((((ALL X. ~ bnd_less X X) & @@ -1189,13 +1189,13 @@ (ALL X. (~ bnd_prime X | ~ bnd_less bnd_a X) | bnd_less (bnd_factorial_plus_one bnd_a) X))) = False" -by (tactic {*unfold_def_tac @{context} []*}) +by (tactic \unfold_def_tac @{context} []\) (* SET062^6.p.out [[(Annotated_step ("3", "unfold_def"), *) lemma "(\Z3. False \ bnd_cA Z3) = False \ (\Z3. False \ bnd_cA Z3) = False" -by (tactic {*unfold_def_tac @{context} []*}) +by (tactic \unfold_def_tac @{context} []\) (* (* SEU559^2.p.out *) @@ -1253,7 +1253,7 @@ False \ AGT037_2_bnd_possibly_likes AGT037_2_bnd_jan AGT037_2_bnd_cola AGT037_2_bnd_sK1_SX0 = False" -by (tactic {*nonfull_extcnf_combined_tac @{context} [Existential_Var]*}) +by (tactic \nonfull_extcnf_combined_tac @{context} [Existential_Var]\) (* (Annotated_step ("202", "extcnf_forall_neg"), *) lemma "\(SV13::TPTP_Interpret.ind) (SV39::AGT037_2_bnd_mu) (SV29::AGT037_2_bnd_mu) @@ -1297,7 +1297,7 @@ apply (tactic {*clause_breaker 1*}) apply (tactic {*nonfull_extcnf_combined_tac []*}) *) -by (tactic {*nonfull_extcnf_combined_tac @{context} [Existential_Var]*}) +by (tactic \nonfull_extcnf_combined_tac @{context} [Existential_Var]\) (*(*NUM667^1*) lemma "\SV12 SV13 SV14 SV9 SV10 SV11. @@ -2157,7 +2157,7 @@ \ (\ SEV405_5_bnd_cA \ SV1 (SEV405_5_bnd_sK1_SY2 SV1)))) = False" (* apply (tactic {*full_extcnf_combined_tac*}) *) -by (tactic {*nonfull_extcnf_combined_tac @{context} [Existential_Var]*}) +by (tactic \nonfull_extcnf_combined_tac @{context} [Existential_Var]\) (* (Annotated_step ("13", "extcnf_forall_pos"), *) lemma "(\SY31 SY32. @@ -2168,7 +2168,7 @@ bnd_sK2 (bnd_sK4 SV1 SY42) = bnd_sK5 (bnd_sK2 SV1) (bnd_sK2 SY42)) = True" -by (tactic {*nonfull_extcnf_combined_tac @{context} [Universal]*}) +by (tactic \nonfull_extcnf_combined_tac @{context} [Universal]\) (* (Annotated_step ("14", "extcnf_forall_pos"), *) lemma "(\SY35 SY36. @@ -2179,7 +2179,7 @@ bnd_sK1 (bnd_sK3 SV2 SY43) = bnd_sK4 (bnd_sK1 SV2) (bnd_sK1 SY43)) = True" -by (tactic {*nonfull_extcnf_combined_tac @{context} [Universal]*}) +by (tactic \nonfull_extcnf_combined_tac @{context} [Universal]\) (*from SYO198^5.p.out*) @@ -2188,7 +2188,7 @@ \ \ (\ SX0 bnd_sK1_Xx \ \ SX0 bnd_sK2_Xy)) = True \ (\ \ (\ True \ \ True)) = True" -apply (tactic {*extcnf_forall_special_pos_tac 1*}) +apply (tactic \extcnf_forall_special_pos_tac 1\) done (* (Annotated_step ("13", "extcnf_forall_special_pos"), *) @@ -2196,7 +2196,7 @@ \ \ (\ SX0 bnd_sK1_Xx \ \ SX0 bnd_sK2_Xy)) = True \ (\ \ (\ bnd_sK1_Xx \ \ bnd_sK2_Xy)) = True" -apply (tactic {*extcnf_forall_special_pos_tac 1*}) +apply (tactic \extcnf_forall_special_pos_tac 1\) done (* [[(Annotated_step ("8", "polarity_switch"), *) @@ -2205,7 +2205,7 @@ (\ (\(Xx::bool) (Xy::bool) Xz::bool. True \ True \ True)) = True" -apply (tactic {*nonfull_extcnf_combined_tac @{context} [Polarity_switch]*}) +apply (tactic \nonfull_extcnf_combined_tac @{context} [Polarity_switch]\) done lemma "((\SY22 SY23 SY24. @@ -2224,7 +2224,7 @@ (\SY28. SY25 SY28 \ bnd_sK1_RRR SY28 SY27) \ bnd_sK1_RRR (bnd_sK2_U SY25) SY27)) = True" -apply (tactic {*standard_cnf_tac @{context} 1*}) +apply (tactic \standard_cnf_tac @{context} 1\) done lemma "((\Xx. bnd_in Xx bnd_emptyset \ (\Xphi. Xphi)) \ @@ -2236,7 +2236,7 @@ False \ (\Xx. bnd_in Xx bnd_emptyset \ (\Xphi. Xphi)) = True" -apply (tactic {*standard_cnf_tac @{context} 1*}) +apply (tactic \standard_cnf_tac @{context} 1\) done lemma "((\Xx. bnd_in Xx bnd_emptyset \ (\Xphi. Xphi)) \ @@ -2248,7 +2248,7 @@ False \ (\Xx Xy. bnd_in Xx (bnd_setadjoin Xx Xy)) = True" -apply (tactic {*standard_cnf_tac @{context} 1*}) +apply (tactic \standard_cnf_tac @{context} 1\) done lemma "((\Xx. bnd_in Xx bnd_emptyset \ (\Xphi. Xphi)) \ @@ -2261,7 +2261,7 @@ (\A B. A = B \ (\Xx Xy. Xx = Xy \ bnd_in Xx A = bnd_in Xy B)) = True" -apply (tactic {*standard_cnf_tac @{context} 1*}) +apply (tactic \standard_cnf_tac @{context} 1\) done lemma "((\Xx. bnd_in Xx bnd_emptyset \ (\Xphi. Xphi)) \ @@ -2274,7 +2274,7 @@ (\SY0. bnd_in SY0 bnd_omega \ bnd_setadjoin SY0 SY0 \ bnd_emptyset) = False" -apply (tactic {*standard_cnf_tac @{context} 1*}) +apply (tactic \standard_cnf_tac @{context} 1\) done (*nested conjunctions*) @@ -2287,7 +2287,7 @@ False \ (\Xx. bnd_cP bnd_e Xx = Xx) = True" -apply (tactic {*standard_cnf_tac @{context} 1*}) +apply (tactic \standard_cnf_tac @{context} 1\) done end