diff -r 8aab63a91053 -r 0a0d6d79d984 doc-src/TutorialI/Rules/Primes.thy --- a/doc-src/TutorialI/Rules/Primes.thy Wed Nov 18 14:00:08 2009 +0100 +++ b/doc-src/TutorialI/Rules/Primes.thy Thu Nov 19 08:19:57 2009 +0100 @@ -112,13 +112,13 @@ (*uniqueness of GCDs*) lemma is_gcd_unique: "\ is_gcd m a b; is_gcd n a b \ \ m=n" apply (simp add: is_gcd_def); -apply (blast intro: dvd_anti_sym) +apply (blast intro: dvd_antisym) done text {* -@{thm[display] dvd_anti_sym} -\rulename{dvd_anti_sym} +@{thm[display] dvd_antisym} +\rulename{dvd_antisym} \begin{isabelle} proof\ (prove):\ step\ 1\isanewline @@ -154,7 +154,7 @@ apply (auto intro: dvd_trans [of _ m]) done -(*This is half of the proof (by dvd_anti_sym) of*) +(*This is half of the proof (by dvd_antisym) of*) lemma gcd_mult_cancel: "gcd k n = 1 \ gcd (k*m) n = gcd m n" oops