diff -r 438e1a11445f -r 0a9688695a1b src/HOL/Analysis/Gamma_Function.thy --- a/src/HOL/Analysis/Gamma_Function.thy Wed Nov 07 23:03:45 2018 +0100 +++ b/src/HOL/Analysis/Gamma_Function.thy Thu Nov 08 09:11:52 2018 +0100 @@ -372,7 +372,7 @@ shows "uniformly_convergent_on (ball z d) (\n z. ln_Gamma_series z n :: complex)" proof (intro Cauchy_uniformly_convergent uniformly_Cauchy_onI') fix e :: real assume e: "e > 0" - define e'' where "e'' = (SUP t:ball z d. norm t + norm t^2)" + define e'' where "e'' = (SUP t\ball z d. norm t + norm t^2)" define e' where "e' = e / (2*e'')" have "bounded ((\t. norm t + norm t^2) ` cball z d)" by (intro compact_imp_bounded compact_continuous_image) (auto intro!: continuous_intros) @@ -2270,7 +2270,7 @@ qed ultimately have compact: "compact B" by (subst compact_eq_bounded_closed) blast - define M where "M = (SUP z:B. norm (h' z))" + define M where "M = (SUP z\B. norm (h' z))" have "compact (h' ` B)" by (intro compact_continuous_image continuous_on_subset[OF h'_cont] compact) blast+ hence bdd: "bdd_above ((\z. norm (h' z)) ` B)"