diff -r 438e1a11445f -r 0a9688695a1b src/HOL/Probability/Distribution_Functions.thy --- a/src/HOL/Probability/Distribution_Functions.thy Wed Nov 07 23:03:45 2018 +0100 +++ b/src/HOL/Probability/Distribution_Functions.thy Thu Nov 08 09:11:52 2018 +0100 @@ -220,13 +220,13 @@ and finite_borel_measure_interval_measure: "finite_borel_measure (interval_measure F)" proof - let ?F = "interval_measure F" - { have "ennreal (m - 0) = (SUP i::nat. ennreal (F (real i) - F (- real i)))" + { have "ennreal (m - 0) = (SUP i. ennreal (F (real i) - F (- real i)))" by (intro LIMSEQ_unique[OF _ LIMSEQ_SUP] tendsto_ennrealI tendsto_intros lim_F_at_bot[THEN filterlim_compose] lim_F_at_top[THEN filterlim_compose] lim_F_at_bot[THEN filterlim_compose] filterlim_real_sequentially filterlim_uminus_at_top[THEN iffD1]) (auto simp: incseq_def nondecF intro!: diff_mono) - also have "\ = (SUP i::nat. emeasure ?F {- real i<..real i})" + also have "\ = (SUP i. emeasure ?F {- real i<..real i})" by (subst emeasure_interval_measure_Ioc) (simp_all add: nondecF right_cont_F) also have "\ = emeasure ?F (\i::nat. {- real i<..real i})" by (rule SUP_emeasure_incseq) (auto simp: incseq_def)