diff -r c45845743f04 -r 0ab754d13ccd src/HOL/Decision_Procs/ferrack_tac.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Decision_Procs/ferrack_tac.ML Fri Feb 06 15:15:32 2009 +0100 @@ -0,0 +1,113 @@ +(* Title: HOL/Reflection/ferrack_tac.ML + Author: Amine Chaieb, TU Muenchen +*) + +structure Ferrack_Tac = +struct + +val trace = ref false; +fun trace_msg s = if !trace then tracing s else (); + +val ferrack_ss = let val ths = [@{thm real_of_int_inject}, @{thm real_of_int_less_iff}, + @{thm real_of_int_le_iff}] + in @{simpset} delsimps ths addsimps (map (fn th => th RS sym) ths) + end; + +val binarith = + @{thms normalize_bin_simps} @ @{thms pred_bin_simps} @ @{thms succ_bin_simps} @ + @{thms add_bin_simps} @ @{thms minus_bin_simps} @ @{thms mult_bin_simps}; +val comp_arith = binarith @ simp_thms + +val zdvd_int = @{thm zdvd_int}; +val zdiff_int_split = @{thm zdiff_int_split}; +val all_nat = @{thm all_nat}; +val ex_nat = @{thm ex_nat}; +val number_of1 = @{thm number_of1}; +val number_of2 = @{thm number_of2}; +val split_zdiv = @{thm split_zdiv}; +val split_zmod = @{thm split_zmod}; +val mod_div_equality' = @{thm mod_div_equality'}; +val split_div' = @{thm split_div'}; +val Suc_plus1 = @{thm Suc_plus1}; +val imp_le_cong = @{thm imp_le_cong}; +val conj_le_cong = @{thm conj_le_cong}; +val nat_mod_add_eq = @{thm mod_add1_eq} RS sym; +val nat_mod_add_left_eq = @{thm mod_add_left_eq} RS sym; +val nat_mod_add_right_eq = @{thm mod_add_right_eq} RS sym; +val int_mod_add_eq = @{thm zmod_zadd1_eq} RS sym; +val int_mod_add_left_eq = @{thm zmod_zadd_left_eq} RS sym; +val int_mod_add_right_eq = @{thm zmod_zadd_right_eq} RS sym; +val nat_div_add_eq = @{thm div_add1_eq} RS sym; +val int_div_add_eq = @{thm zdiv_zadd1_eq} RS sym; +val ZDIVISION_BY_ZERO_MOD = @{thm DIVISION_BY_ZERO} RS conjunct2; +val ZDIVISION_BY_ZERO_DIV = @{thm DIVISION_BY_ZERO} RS conjunct1; + +fun prepare_for_linr sg q fm = + let + val ps = Logic.strip_params fm + val hs = map HOLogic.dest_Trueprop (Logic.strip_assums_hyp fm) + val c = HOLogic.dest_Trueprop (Logic.strip_assums_concl fm) + fun mk_all ((s, T), (P,n)) = + if 0 mem loose_bnos P then + (HOLogic.all_const T $ Abs (s, T, P), n) + else (incr_boundvars ~1 P, n-1) + fun mk_all2 (v, t) = HOLogic.all_const (fastype_of v) $ lambda v t; + val rhs = hs +(* val (rhs,irhs) = List.partition (relevant (rev ps)) hs *) + val np = length ps + val (fm',np) = foldr (fn ((x, T), (fm,n)) => mk_all ((x, T), (fm,n))) + (foldr HOLogic.mk_imp c rhs, np) ps + val (vs, _) = List.partition (fn t => q orelse (type_of t) = HOLogic.natT) + (OldTerm.term_frees fm' @ OldTerm.term_vars fm'); + val fm2 = foldr mk_all2 fm' vs + in (fm2, np + length vs, length rhs) end; + +(*Object quantifier to meta --*) +fun spec_step n th = if (n=0) then th else (spec_step (n-1) th) RS spec ; + +(* object implication to meta---*) +fun mp_step n th = if (n=0) then th else (mp_step (n-1) th) RS mp; + + +fun linr_tac ctxt q i = + (ObjectLogic.atomize_prems_tac i) + THEN (REPEAT_DETERM (split_tac [@{thm split_min}, @{thm split_max}, @{thm abs_split}] i)) + THEN (fn st => + let + val g = List.nth (prems_of st, i - 1) + val thy = ProofContext.theory_of ctxt + (* Transform the term*) + val (t,np,nh) = prepare_for_linr thy q g + (* Some simpsets for dealing with mod div abs and nat*) + val simpset0 = Simplifier.theory_context thy HOL_basic_ss addsimps comp_arith + val ct = cterm_of thy (HOLogic.mk_Trueprop t) + (* Theorem for the nat --> int transformation *) + val pre_thm = Seq.hd (EVERY + [simp_tac simpset0 1, + TRY (simp_tac (Simplifier.theory_context thy ferrack_ss) 1)] + (trivial ct)) + fun assm_tac i = REPEAT_DETERM_N nh (assume_tac i) + (* The result of the quantifier elimination *) + val (th, tac) = case (prop_of pre_thm) of + Const ("==>", _) $ (Const ("Trueprop", _) $ t1) $ _ => + let val pth = linr_oracle (cterm_of thy (Pattern.eta_long [] t1)) + in + (trace_msg ("calling procedure with term:\n" ^ + Syntax.string_of_term ctxt t1); + ((pth RS iffD2) RS pre_thm, + assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i))) + end + | _ => (pre_thm, assm_tac i) + in (rtac (((mp_step nh) o (spec_step np)) th) i + THEN tac) st + end handle Subscript => no_tac st); + +fun linr_meth src = + Method.syntax (Args.mode "no_quantify") src + #> (fn (q, ctxt) => Method.SIMPLE_METHOD' (linr_tac ctxt (not q))); + +val setup = + Method.add_method ("rferrack", linr_meth, + "decision procedure for linear real arithmetic"); + +end