diff -r fd242f857508 -r 0bec857c9871 doc-src/TutorialI/Recdef/document/termination.tex --- a/doc-src/TutorialI/Recdef/document/termination.tex Fri Sep 28 20:08:05 2001 +0200 +++ b/doc-src/TutorialI/Recdef/document/termination.tex Fri Sep 28 20:08:28 2001 +0200 @@ -17,7 +17,69 @@ recursive call. Let us try the following artificial function:% \end{isamarkuptext}% \isacommand{consts}\ f\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat{\isasymtimes}nat\ {\isasymRightarrow}\ nat{\isachardoublequote}\isanewline -\isacommand{recdef}\ \end{isabellebody}% +\isacommand{recdef}\ f\ {\isachardoublequote}measure{\isacharparenleft}{\isasymlambda}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}{\isachardot}\ x{\isacharminus}y{\isacharparenright}{\isachardoublequote}\isanewline +\ \ {\isachardoublequote}f{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}if\ x\ {\isasymle}\ y\ then\ x\ else\ f{\isacharparenleft}x{\isacharcomma}y{\isacharplus}{\isadigit{1}}{\isacharparenright}{\isacharparenright}{\isachardoublequote}% +\begin{isamarkuptext}% +\noindent +Isabelle prints a +\REMARK{error or warning? change this part? rename g to f?} +message showing you what it was unable to prove. You will then +have to prove it as a separate lemma before you attempt the definition +of your function once more. In our case the required lemma is the obvious one:% +\end{isamarkuptext}% +\isacommand{lemma}\ termi{\isacharunderscore}lem{\isacharcolon}\ {\isachardoublequote}{\isasymnot}\ x\ {\isasymle}\ y\ {\isasymLongrightarrow}\ x\ {\isacharminus}\ Suc\ y\ {\isacharless}\ x\ {\isacharminus}\ y{\isachardoublequote}% +\begin{isamarkuptxt}% +\noindent +It was not proved automatically because of the awkward behaviour of subtraction +on type \isa{nat}. This requires more arithmetic than is tried by default:% +\end{isamarkuptxt}% +\isacommand{apply}{\isacharparenleft}arith{\isacharparenright}\isanewline +\isacommand{done}% +\begin{isamarkuptext}% +\noindent +Because \isacommand{recdef}'s termination prover involves simplification, +we include in our second attempt a hint: the \attrdx{recdef_simp} attribute +says to use \isa{termi{\isacharunderscore}lem} as +a simplification rule.% +\end{isamarkuptext}% +\isacommand{consts}\ g\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat{\isasymtimes}nat\ {\isasymRightarrow}\ nat{\isachardoublequote}\isanewline +\isacommand{recdef}\ g\ {\isachardoublequote}measure{\isacharparenleft}{\isasymlambda}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}{\isachardot}\ x{\isacharminus}y{\isacharparenright}{\isachardoublequote}\isanewline +\ \ {\isachardoublequote}g{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}if\ x\ {\isasymle}\ y\ then\ x\ else\ g{\isacharparenleft}x{\isacharcomma}y{\isacharplus}{\isadigit{1}}{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline +{\isacharparenleft}\isakeyword{hints}\ recdef{\isacharunderscore}simp{\isacharcolon}\ termi{\isacharunderscore}lem{\isacharparenright}% +\begin{isamarkuptext}% +\noindent +This time everything works fine. Now \isa{g{\isachardot}simps} contains precisely +the stated recursion equation for \isa{g}, which has been stored as a +simplification rule. Thus we can automatically prove results such as this one:% +\end{isamarkuptext}% +\isacommand{theorem}\ {\isachardoublequote}g{\isacharparenleft}{\isadigit{1}}{\isacharcomma}{\isadigit{0}}{\isacharparenright}\ {\isacharequal}\ g{\isacharparenleft}{\isadigit{1}}{\isacharcomma}{\isadigit{1}}{\isacharparenright}{\isachardoublequote}\isanewline +\isacommand{apply}{\isacharparenleft}simp{\isacharparenright}\isanewline +\isacommand{done}% +\begin{isamarkuptext}% +\noindent +More exciting theorems require induction, which is discussed below. + +If the termination proof requires a new lemma that is of general use, you can +turn it permanently into a simplification rule, in which case the above +\isacommand{hint} is not necessary. But our \isa{termi{\isacharunderscore}lem} is not +sufficiently general to warrant this distinction. + +The attentive reader may wonder why we chose to call our function \isa{g} +rather than \isa{f} the second time around. The reason is that, despite +the failed termination proof, the definition of \isa{f} did not +fail, and thus we could not define it a second time. However, all theorems +about \isa{f}, for example \isa{f{\isachardot}simps}, carry as a precondition +the unproved termination condition. Moreover, the theorems +\isa{f{\isachardot}simps} are not stored as simplification rules. +However, this mechanism +allows a delayed proof of termination: instead of proving +\isa{termi{\isacharunderscore}lem} up front, we could prove +it later on and then use it to remove the preconditions from the theorems +about \isa{f}. In most cases this is more cumbersome than proving things +up front. +\REMARK{FIXME, with one exception: nested recursion.}% +\end{isamarkuptext}% +\end{isabellebody}% %%% Local Variables: %%% mode: latex %%% TeX-master: "root"