diff -r f2e4e383dbca -r 0c0e7de7e9c5 doc-src/TutorialI/Rules/Blast.thy --- a/doc-src/TutorialI/Rules/Blast.thy Wed Jan 10 11:06:07 2001 +0100 +++ b/doc-src/TutorialI/Rules/Blast.thy Wed Jan 10 11:07:11 2001 +0100 @@ -3,8 +3,7 @@ lemma "((\x. \y. p(x)=p(y)) = ((\x. q(x))=(\y. p(y)))) = ((\x. \y. q(x)=q(y)) = ((\x. p(x))=(\y. q(y))))" -apply blast -done +by blast text{*\noindent Until now, we have proved everything using only induction and simplification. Substantial proofs require more elaborate types of @@ -16,13 +15,11 @@ (\x. cyclist(x) \ industrious(x)) \ (\x. \healthy(x) \ cyclist(x) \ \honest(x)) \ (\x. grocer(x) \ \cyclist(x))"; -apply blast -done +by blast lemma "(\i\I. A(i)) \ (\j\J. B(j)) = (\i\I. \j\J. A(i) \ B(j))" -apply blast -done +by blast text {* @{thm[display] mult_is_0}