diff -r a70b89a3e02e -r 0c7e865fa7cb src/HOL/Complex.thy --- a/src/HOL/Complex.thy Tue Dec 29 23:50:44 2015 +0100 +++ b/src/HOL/Complex.thy Wed Dec 30 11:21:54 2015 +0100 @@ -382,14 +382,14 @@ lemmas sums_Im = bounded_linear.sums [OF bounded_linear_Im] lemma tendsto_Complex [tendsto_intros]: - "(f ---> a) F \ (g ---> b) F \ ((\x. Complex (f x) (g x)) ---> Complex a b) F" + "(f \ a) F \ (g \ b) F \ ((\x. Complex (f x) (g x)) \ Complex a b) F" by (auto intro!: tendsto_intros) lemma tendsto_complex_iff: - "(f ---> x) F \ (((\x. Re (f x)) ---> Re x) F \ ((\x. Im (f x)) ---> Im x) F)" + "(f \ x) F \ (((\x. Re (f x)) \ Re x) F \ ((\x. Im (f x)) \ Im x) F)" proof safe - assume "((\x. Re (f x)) ---> Re x) F" "((\x. Im (f x)) ---> Im x) F" - from tendsto_Complex[OF this] show "(f ---> x) F" + assume "((\x. Re (f x)) \ Re x) F" "((\x. Im (f x)) \ Im x) F" + from tendsto_Complex[OF this] show "(f \ x) F" unfolding complex.collapse . qed (auto intro: tendsto_intros) @@ -530,7 +530,7 @@ lemmas continuous_on_cnj [simp, continuous_intros] = bounded_linear.continuous_on [OF bounded_linear_cnj] lemmas has_derivative_cnj [simp, derivative_intros] = bounded_linear.has_derivative [OF bounded_linear_cnj] -lemma lim_cnj: "((\x. cnj(f x)) ---> cnj l) F \ (f ---> l) F" +lemma lim_cnj: "((\x. cnj(f x)) \ cnj l) F \ (f \ l) F" by (simp add: tendsto_iff dist_complex_def complex_cnj_diff [symmetric] del: complex_cnj_diff) lemma sums_cnj: "((\x. cnj(f x)) sums cnj l) \ (f sums l)"