diff -r aa2764dda077 -r 0cf192e489e2 src/HOL/ex/Classical.thy --- a/src/HOL/ex/Classical.thy Thu Jan 04 17:52:28 2007 +0100 +++ b/src/HOL/ex/Classical.thy Thu Jan 04 17:55:12 2007 +0100 @@ -825,7 +825,7 @@ text{*A manual resolution proof of problem 19.*} lemma "\x. \y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))" -proof (rule ccontr, skolemize, make_clauses) +proof (neg_clausify) fix x assume P: "\U. P U" and Q: "\U. ~ Q U" @@ -844,7 +844,7 @@ text{*Full single-step proof*} lemma "\S::'a set set. \x \ S. \y \ S. x \ y \ \z. S \ {z}" -proof (rule ccontr, skolemize, make_clauses) +proof (neg_clausify) fix S :: "'a set set" assume CL1: "\Z. ~ (S \ {Z})" and CL2: "\X Y. X \ S | Y \ S | X \ Y" @@ -872,7 +872,7 @@ text{*Partially condensed proof*} lemma singleton_example_1: "\S::'a set set. \x \ S. \y \ S. x \ y \ \z. S \ {z}" -proof (rule ccontr, skolemize, make_clauses) +proof (neg_clausify) fix S :: "'a set set" assume CL1: "\Z. ~ (S \ {Z})" and CL2: "\X Y. X \ S | Y \ S | X \ Y" @@ -890,7 +890,7 @@ (**Not working: needs Metis text{*More condensed proof*} lemma "\S::'a set set. \x \ S. \y \ S. x \ y \ \z. S \ {z}" -proof (rule ccontr, skolemize, make_clauses) +proof (neg_clausify) fix S :: "'a set set" assume CL1: "\Z. ~ (S \ {Z})" and CL2: "\X Y. X \ S | Y \ S | X \ Y"