diff -r 56fa33537869 -r 0d31c0546286 src/HOL/Metis_Examples/Binary_Tree.thy --- a/src/HOL/Metis_Examples/Binary_Tree.thy Fri Feb 14 07:53:45 2014 +0100 +++ b/src/HOL/Metis_Examples/Binary_Tree.thy Fri Feb 14 07:53:45 2014 +0100 @@ -130,14 +130,14 @@ lemma preorder_bt_map: "preorder (bt_map f t) = map f (preorder t)" apply (induct t) - apply (metis bt_map.simps(1) map.simps(1) preorder.simps(1)) + apply (metis bt_map.simps(1) list.map(1) preorder.simps(1)) by simp lemma inorder_bt_map: "inorder (bt_map f t) = map f (inorder t)" proof (induct t) case Lf thus ?case proof - - have "map f [] = []" by (metis map.simps(1)) + have "map f [] = []" by (metis list.map(1)) hence "map f [] = inorder Lf" by (metis inorder.simps(1)) hence "inorder (bt_map f Lf) = map f []" by (metis bt_map.simps(1)) thus "inorder (bt_map f Lf) = map f (inorder Lf)" by (metis inorder.simps(1))