diff -r 510b46987886 -r 0d46bea01741 src/HOL/IntDef.thy --- a/src/HOL/IntDef.thy Thu Nov 08 20:07:58 2007 +0100 +++ b/src/HOL/IntDef.thy Thu Nov 08 20:08:00 2007 +0100 @@ -677,51 +677,51 @@ by (cases z rule: int_cases) auto text{*Contributed by Brian Huffman*} -theorem int_diff_cases [case_names diff]: -assumes prem: "!!m n. (z\int) = of_nat m - of_nat n ==> P" shows "P" +theorem int_diff_cases: + obtains (diff) m n where "(z\int) = of_nat m - of_nat n" apply (cases z rule: eq_Abs_Integ) -apply (rule_tac m=x and n=y in prem) +apply (rule_tac m=x and n=y in diff) apply (simp add: int_def diff_def minus add) done subsection {* Legacy theorems *} -lemmas zminus_zminus = minus_minus [of "?z::int"] +lemmas zminus_zminus = minus_minus [of "z::int", standard] lemmas zminus_0 = minus_zero [where 'a=int] -lemmas zminus_zadd_distrib = minus_add_distrib [of "?z::int" "?w"] -lemmas zadd_commute = add_commute [of "?z::int" "?w"] -lemmas zadd_assoc = add_assoc [of "?z1.0::int" "?z2.0" "?z3.0"] -lemmas zadd_left_commute = add_left_commute [of "?x::int" "?y" "?z"] +lemmas zminus_zadd_distrib = minus_add_distrib [of "z::int" "w", standard] +lemmas zadd_commute = add_commute [of "z::int" "w", standard] +lemmas zadd_assoc = add_assoc [of "z1::int" "z2" "z3", standard] +lemmas zadd_left_commute = add_left_commute [of "x::int" "y" "z", standard] lemmas zadd_ac = zadd_assoc zadd_commute zadd_left_commute lemmas zmult_ac = OrderedGroup.mult_ac -lemmas zadd_0 = OrderedGroup.add_0_left [of "?z::int"] -lemmas zadd_0_right = OrderedGroup.add_0_left [of "?z::int"] -lemmas zadd_zminus_inverse2 = left_minus [of "?z::int"] -lemmas zmult_zminus = mult_minus_left [of "?z::int" "?w"] -lemmas zmult_commute = mult_commute [of "?z::int" "?w"] -lemmas zmult_assoc = mult_assoc [of "?z1.0::int" "?z2.0" "?z3.0"] -lemmas zadd_zmult_distrib = left_distrib [of "?z1.0::int" "?z2.0" "?w"] -lemmas zadd_zmult_distrib2 = right_distrib [of "?w::int" "?z1.0" "?z2.0"] -lemmas zdiff_zmult_distrib = left_diff_distrib [of "?z1.0::int" "?z2.0" "?w"] -lemmas zdiff_zmult_distrib2 = right_diff_distrib [of "?w::int" "?z1.0" "?z2.0"] +lemmas zadd_0 = OrderedGroup.add_0_left [of "z::int", standard] +lemmas zadd_0_right = OrderedGroup.add_0_left [of "z::int", standard] +lemmas zadd_zminus_inverse2 = left_minus [of "z::int", standard] +lemmas zmult_zminus = mult_minus_left [of "z::int" "w", standard] +lemmas zmult_commute = mult_commute [of "z::int" "w", standard] +lemmas zmult_assoc = mult_assoc [of "z1::int" "z2" "z3", standard] +lemmas zadd_zmult_distrib = left_distrib [of "z1::int" "z2" "w", standard] +lemmas zadd_zmult_distrib2 = right_distrib [of "w::int" "z1" "z2", standard] +lemmas zdiff_zmult_distrib = left_diff_distrib [of "z1::int" "z2" "w", standard] +lemmas zdiff_zmult_distrib2 = right_diff_distrib [of "w::int" "z1" "z2", standard] lemmas int_distrib = zadd_zmult_distrib zadd_zmult_distrib2 zdiff_zmult_distrib zdiff_zmult_distrib2 -lemmas zmult_1 = mult_1_left [of "?z::int"] -lemmas zmult_1_right = mult_1_right [of "?z::int"] +lemmas zmult_1 = mult_1_left [of "z::int", standard] +lemmas zmult_1_right = mult_1_right [of "z::int", standard] -lemmas zle_refl = order_refl [of "?w::int"] -lemmas zle_trans = order_trans [where 'a=int and x="?i" and y="?j" and z="?k"] -lemmas zle_anti_sym = order_antisym [of "?z::int" "?w"] -lemmas zle_linear = linorder_linear [of "?z::int" "?w"] +lemmas zle_refl = order_refl [of "w::int", standard] +lemmas zle_trans = order_trans [where 'a=int and x="i" and y="j" and z="k", standard] +lemmas zle_anti_sym = order_antisym [of "z::int" "w", standard] +lemmas zle_linear = linorder_linear [of "z::int" "w", standard] lemmas zless_linear = linorder_less_linear [where 'a = int] -lemmas zadd_left_mono = add_left_mono [of "?i::int" "?j" "?k"] -lemmas zadd_strict_right_mono = add_strict_right_mono [of "?i::int" "?j" "?k"] -lemmas zadd_zless_mono = add_less_le_mono [of "?w'::int" "?w" "?z'" "?z"] +lemmas zadd_left_mono = add_left_mono [of "i::int" "j" "k", standard] +lemmas zadd_strict_right_mono = add_strict_right_mono [of "i::int" "j" "k", standard] +lemmas zadd_zless_mono = add_less_le_mono [of "w'::int" "w" "z'" "z", standard] lemmas int_0_less_1 = zero_less_one [where 'a=int] lemmas int_0_neq_1 = zero_neq_one [where 'a=int] @@ -731,17 +731,17 @@ lemmas zadd_int = of_nat_add [where 'a=int, symmetric] lemmas int_mult = of_nat_mult [where 'a=int] lemmas zmult_int = of_nat_mult [where 'a=int, symmetric] -lemmas int_eq_0_conv = of_nat_eq_0_iff [where 'a=int and m="?n"] +lemmas int_eq_0_conv = of_nat_eq_0_iff [where 'a=int and m="n", standard] lemmas zless_int = of_nat_less_iff [where 'a=int] -lemmas int_less_0_conv = of_nat_less_0_iff [where 'a=int and m="?k"] +lemmas int_less_0_conv = of_nat_less_0_iff [where 'a=int and m="k", standard] lemmas zero_less_int_conv = of_nat_0_less_iff [where 'a=int] lemmas zle_int = of_nat_le_iff [where 'a=int] lemmas zero_zle_int = of_nat_0_le_iff [where 'a=int] -lemmas int_le_0_conv = of_nat_le_0_iff [where 'a=int and m="?n"] +lemmas int_le_0_conv = of_nat_le_0_iff [where 'a=int and m="n", standard] lemmas int_0 = of_nat_0 [where 'a=int] lemmas int_1 = of_nat_1 [where 'a=int] lemmas int_Suc = of_nat_Suc [where 'a=int] -lemmas abs_int_eq = abs_of_nat [where 'a=int and n="?m"] +lemmas abs_int_eq = abs_of_nat [where 'a=int and n="m", standard] lemmas of_int_int_eq = of_int_of_nat_eq [where 'a=int] lemmas zdiff_int = of_nat_diff [where 'a=int, symmetric] lemmas zless_le = less_int_def [THEN meta_eq_to_obj_eq]