diff -r 5cfa11eeddfe -r 0d57259fea82 doc-src/TutorialI/Inductive/document/Mutual.tex --- a/doc-src/TutorialI/Inductive/document/Mutual.tex Sun Apr 09 18:51:23 2006 +0200 +++ b/doc-src/TutorialI/Inductive/document/Mutual.tex Sun Apr 09 19:29:44 2006 +0200 @@ -26,24 +26,24 @@ \end{isamarkuptext}% \isamarkuptrue% \isacommand{consts}\isamarkupfalse% -\ even\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}nat\ set{\isachardoublequoteclose}\isanewline -\ \ \ \ \ \ \ odd\ \ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}nat\ set{\isachardoublequoteclose}\isanewline +\ Even\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}nat\ set{\isachardoublequoteclose}\isanewline +\ \ \ \ \ \ \ Odd\ \ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}nat\ set{\isachardoublequoteclose}\isanewline \isanewline \isacommand{inductive}\isamarkupfalse% -\ even\ odd\isanewline +\ Even\ Odd\isanewline \isakeyword{intros}\isanewline -zero{\isacharcolon}\ \ {\isachardoublequoteopen}{\isadigit{0}}\ {\isasymin}\ even{\isachardoublequoteclose}\isanewline -evenI{\isacharcolon}\ {\isachardoublequoteopen}n\ {\isasymin}\ odd\ {\isasymLongrightarrow}\ Suc\ n\ {\isasymin}\ even{\isachardoublequoteclose}\isanewline -oddI{\isacharcolon}\ \ {\isachardoublequoteopen}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ Suc\ n\ {\isasymin}\ odd{\isachardoublequoteclose}% +zero{\isacharcolon}\ \ {\isachardoublequoteopen}{\isadigit{0}}\ {\isasymin}\ Even{\isachardoublequoteclose}\isanewline +EvenI{\isacharcolon}\ {\isachardoublequoteopen}n\ {\isasymin}\ Odd\ {\isasymLongrightarrow}\ Suc\ n\ {\isasymin}\ Even{\isachardoublequoteclose}\isanewline +OddI{\isacharcolon}\ \ {\isachardoublequoteopen}n\ {\isasymin}\ Even\ {\isasymLongrightarrow}\ Suc\ n\ {\isasymin}\ Odd{\isachardoublequoteclose}% \begin{isamarkuptext}% \noindent The mutually inductive definition of multiple sets is no different from that of a single set, except for induction: just as for mutually recursive datatypes, induction needs to involve all the simultaneously defined sets. In -the above case, the induction rule is called \isa{even{\isacharunderscore}odd{\isachardot}induct} +the above case, the induction rule is called \isa{Even{\isacharunderscore}Odd{\isachardot}induct} (simply concatenate the names of the sets involved) and has the conclusion \begin{isabelle}% -\ \ \ \ \ {\isacharparenleft}{\isacharquery}x\ {\isasymin}\ even\ {\isasymlongrightarrow}\ {\isacharquery}P\ {\isacharquery}x{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}{\isacharquery}y\ {\isasymin}\ odd\ {\isasymlongrightarrow}\ {\isacharquery}Q\ {\isacharquery}y{\isacharparenright}% +\ \ \ \ \ {\isacharparenleft}{\isacharquery}x\ {\isasymin}\ Even\ {\isasymlongrightarrow}\ {\isacharquery}P\ {\isacharquery}x{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}{\isacharquery}y\ {\isasymin}\ Odd\ {\isasymlongrightarrow}\ {\isacharquery}Q\ {\isacharquery}y{\isacharparenright}% \end{isabelle} If we want to prove that all even numbers are divisible by two, we have to @@ -51,7 +51,7 @@ \end{isamarkuptext}% \isamarkuptrue% \isacommand{lemma}\isamarkupfalse% -\ {\isachardoublequoteopen}{\isacharparenleft}m\ {\isasymin}\ even\ {\isasymlongrightarrow}\ {\isadigit{2}}\ dvd\ m{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}n\ {\isasymin}\ odd\ {\isasymlongrightarrow}\ {\isadigit{2}}\ dvd\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}% +\ {\isachardoublequoteopen}{\isacharparenleft}m\ {\isasymin}\ Even\ {\isasymlongrightarrow}\ {\isadigit{2}}\ dvd\ m{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}n\ {\isasymin}\ Odd\ {\isasymlongrightarrow}\ {\isadigit{2}}\ dvd\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}% \isadelimproof % \endisadelimproof @@ -66,12 +66,12 @@ \end{isamarkuptxt}% \isamarkuptrue% \isacommand{apply}\isamarkupfalse% -{\isacharparenleft}rule\ even{\isacharunderscore}odd{\isachardot}induct{\isacharparenright}% +{\isacharparenleft}rule\ Even{\isacharunderscore}Odd{\isachardot}induct{\isacharparenright}% \begin{isamarkuptxt}% \begin{isabelle}% \ {\isadigit{1}}{\isachardot}\ {\isadigit{2}}\ dvd\ {\isadigit{0}}\isanewline -\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ odd{\isacharsemicolon}\ {\isadigit{2}}\ dvd\ Suc\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ Suc\ n\isanewline -\ {\isadigit{3}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ Mutual{\isachardot}even{\isacharsemicolon}\ {\isadigit{2}}\ dvd\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}% +\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ Odd{\isacharsemicolon}\ {\isadigit{2}}\ dvd\ Suc\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ Suc\ n\isanewline +\ {\isadigit{3}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ Even{\isacharsemicolon}\ {\isadigit{2}}\ dvd\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}% \end{isabelle} The first two subgoals are proved by simplification and the final one can be proved in the same manner as in \S\ref{sec:rule-induction}