diff -r e0825405d398 -r 0dfcd0fb4172 src/HOL/BNF_Def.thy --- a/src/HOL/BNF_Def.thy Mon Oct 12 22:03:24 2015 +0200 +++ b/src/HOL/BNF_Def.thy Tue Oct 13 09:21:14 2015 +0200 @@ -176,15 +176,6 @@ lemma flip_pred: "A \ Collect (case_prod (R ^--1)) \ (%(x, y). (y, x)) ` A \ Collect (case_prod R)" by auto -lemma Collect_split_mono: "A \ B \ Collect (case_prod A) \ Collect (case_prod B)" - by auto - -lemma Collect_split_mono_strong: - "\X = fst ` A; Y = snd ` A; \a\X. \b \ Y. P a b \ Q a b; A \ Collect (case_prod P)\ \ - A \ Collect (case_prod Q)" - by fastforce - - lemma predicate2_eqD: "A = B \ A a b \ B a b" by simp