diff -r cd1fcda1ea88 -r 0e943b33d907 src/HOL/Tools/Meson/meson_clausify.ML --- a/src/HOL/Tools/Meson/meson_clausify.ML Thu Jan 03 17:10:12 2013 +0100 +++ b/src/HOL/Tools/Meson/meson_clausify.ML Thu Jan 03 17:28:55 2013 +0100 @@ -300,20 +300,20 @@ |> Skip_Proof.make_thm @{theory} (* Converts an Isabelle theorem into NNF. *) -fun nnf_axiom choice_ths new_skolemizer ax_no th ctxt = +fun nnf_axiom choice_ths new_skolem ax_no th ctxt = let val thy = Proof_Context.theory_of ctxt val th = th |> transform_elim_theorem |> zero_var_indexes - |> new_skolemizer ? forall_intr_vars + |> new_skolem ? forall_intr_vars val (th, ctxt) = Variable.import true [th] ctxt |>> snd |>> the_single val th = th |> Conv.fconv_rule Object_Logic.atomize |> cong_extensionalize_thm thy |> abs_extensionalize_thm ctxt |> make_nnf ctxt in - if new_skolemizer then + if new_skolem then let fun skolemize choice_ths = skolemize_with_choice_theorems ctxt choice_ths @@ -364,14 +364,14 @@ end (* Convert a theorem to CNF, with additional premises due to skolemization. *) -fun cnf_axiom ctxt0 new_skolemizer combinators ax_no th = +fun cnf_axiom ctxt0 new_skolem combinators ax_no th = let val thy = Proof_Context.theory_of ctxt0 val choice_ths = choice_theorems thy val (opt, (nnf_th, ctxt)) = - nnf_axiom choice_ths new_skolemizer ax_no th ctxt0 + nnf_axiom choice_ths new_skolem ax_no th ctxt0 fun clausify th = - make_cnf (if new_skolemizer orelse null choice_ths then [] + make_cnf (if new_skolem orelse null choice_ths then [] else map (old_skolem_theorem_from_def thy) (old_skolem_defs th)) th ctxt ctxt val (cnf_ths, ctxt) = clausify nnf_th