diff -r ed7d12bcf8f8 -r 108662d50512 src/HOL/Library/Abstract_Rat.thy --- a/src/HOL/Library/Abstract_Rat.thy Fri Feb 05 14:33:31 2010 +0100 +++ b/src/HOL/Library/Abstract_Rat.thy Fri Feb 05 14:33:50 2010 +0100 @@ -332,7 +332,7 @@ lemma Ndiv[simp]: "INum (x \
\<^sub>N y) = INum x / (INum y ::'a :: {ring_char_0, division_by_zero,field})" by (simp add: Ndiv_def) lemma Nlt0_iff[simp]: assumes nx: "isnormNum x" - shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})< 0) = 0>\<^sub>N x " + shows "((INum x :: 'a :: {ring_char_0,division_by_zero,linordered_field})< 0) = 0>\<^sub>N x " proof- have " \ a b. x = (a,b)" by simp then obtain a b where x[simp]:"x = (a,b)" by blast @@ -345,7 +345,7 @@ qed lemma Nle0_iff[simp]:assumes nx: "isnormNum x" - shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) \ 0) = 0\\<^sub>N x" + shows "((INum x :: 'a :: {ring_char_0,division_by_zero,linordered_field}) \ 0) = 0\\<^sub>N x" proof- have " \ a b. x = (a,b)" by simp then obtain a b where x[simp]:"x = (a,b)" by blast @@ -357,7 +357,7 @@ ultimately show ?thesis by blast qed -lemma Ngt0_iff[simp]:assumes nx: "isnormNum x" shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})> 0) = 0<\<^sub>N x" +lemma Ngt0_iff[simp]:assumes nx: "isnormNum x" shows "((INum x :: 'a :: {ring_char_0,division_by_zero,linordered_field})> 0) = 0<\<^sub>N x" proof- have " \ a b. x = (a,b)" by simp then obtain a b where x[simp]:"x = (a,b)" by blast @@ -369,7 +369,7 @@ ultimately show ?thesis by blast qed lemma Nge0_iff[simp]:assumes nx: "isnormNum x" - shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) \ 0) = 0\\<^sub>N x" + shows "((INum x :: 'a :: {ring_char_0,division_by_zero,linordered_field}) \ 0) = 0\\<^sub>N x" proof- have " \ a b. x = (a,b)" by simp then obtain a b where x[simp]:"x = (a,b)" by blast @@ -382,7 +382,7 @@ qed lemma Nlt_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y" - shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) < INum y) = (x <\<^sub>N y)" + shows "((INum x :: 'a :: {ring_char_0,division_by_zero,linordered_field}) < INum y) = (x <\<^sub>N y)" proof- let ?z = "0::'a" have "((INum x ::'a) < INum y) = (INum (x -\<^sub>N y) < ?z)" using nx ny by simp @@ -391,7 +391,7 @@ qed lemma Nle_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y" - shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})\ INum y) = (x \\<^sub>N y)" + shows "((INum x :: 'a :: {ring_char_0,division_by_zero,linordered_field})\ INum y) = (x \\<^sub>N y)" proof- have "((INum x ::'a) \ INum y) = (INum (x -\<^sub>N y) \ (0::'a))" using nx ny by simp also have "\ = (0\\<^sub>N (x -\<^sub>N y))" using Nle0_iff[OF Nsub_normN[OF ny]] by simp