diff -r b98f1057da0e -r 10c712405854 src/HOL/Analysis/Convex.thy --- a/src/HOL/Analysis/Convex.thy Tue Aug 06 22:47:44 2024 +0100 +++ b/src/HOL/Analysis/Convex.thy Wed Aug 07 12:39:09 2024 +0100 @@ -1194,16 +1194,6 @@ lemma convex_gchoose: "convex_on {k-1..} (\x. x gchoose k)" by (simp add: gbinomial_prod_rev convex_on_cdiv convex_gchoose_aux) -lemma gbinomial_mono: - fixes k::nat and a::real - assumes "of_nat k \ a" "a \ b" shows "a gchoose k \ b gchoose k" - using assms - by (force simp: gbinomial_prod_rev intro!: divide_right_mono prod_mono) - -lemma gbinomial_is_prod: "(a gchoose k) = (\iSome inequalities: Applications of convexity\ lemma Youngs_inequality_0: