diff -r 8fe7e12290e1 -r 10dbf16be15f src/HOL/Complex/CSeries.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Complex/CSeries.thy Mon May 05 18:22:31 2003 +0200 @@ -0,0 +1,30 @@ +(* Title : CSeries.thy + Author : Jacques D. Fleuriot + Copyright : 2002 University of Edinburgh + Description : Finite summation and infinite series for complex numbers +*) + +CSeries = CStar + + +consts sumc :: "[nat,nat,(nat=>complex)] => complex" +primrec + sumc_0 "sumc m 0 f = 0" + sumc_Suc "sumc m (Suc n) f = (if n < m then 0 else sumc m n f + f(n))" + +(* +constdefs + + needs convergence of complex sequences + + csums :: [nat=>complex,complex] => bool (infixr 80) + "f sums s == (%n. sumr 0 n f) ----C> s" + + csummable :: (nat=>complex) => bool + "csummable f == (EX s. f csums s)" + + csuminf :: (nat=>complex) => complex + "csuminf f == (@s. f csums s)" +*) + +end +