diff -r 8fe7e12290e1 -r 10dbf16be15f src/HOL/Complex/ex/Sqrt_Script.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Complex/ex/Sqrt_Script.thy Mon May 05 18:22:31 2003 +0200 @@ -0,0 +1,78 @@ +(* Title: HOL/Hyperreal/ex/Sqrt_Script.thy + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 2001 University of Cambridge +*) + +header {* Square roots of primes are irrational (script version) *} + +theory Sqrt_Script = Primes + Hyperreal: + +text {* + \medskip Contrast this linear Isabelle/Isar script with Markus + Wenzel's more mathematical version. +*} + +subsection {* Preliminaries *} + +lemma prime_nonzero: "p \ prime \ p \ 0" + by (force simp add: prime_def) + +lemma prime_dvd_other_side: + "n * n = p * (k * k) \ p \ prime \ p dvd n" + apply (subgoal_tac "p dvd n * n", blast dest: prime_dvd_mult) + apply (rule_tac j = "k * k" in dvd_mult_left, simp) + done + +lemma reduction: "p \ prime \ + 0 < k \ k * k = p * (j * j) \ k < p * j \ 0 < j" + apply (rule ccontr) + apply (simp add: linorder_not_less) + apply (erule disjE) + apply (frule mult_le_mono, assumption) + apply auto + apply (force simp add: prime_def) + done + +lemma rearrange: "(j::nat) * (p * j) = k * k \ k * k = p * (j * j)" + by (simp add: mult_ac) + +lemma prime_not_square: + "p \ prime \ (\k. 0 < k \ m * m \ p * (k * k))" + apply (induct m rule: nat_less_induct) + apply clarify + apply (frule prime_dvd_other_side, assumption) + apply (erule dvdE) + apply (simp add: nat_mult_eq_cancel_disj prime_nonzero) + apply (blast dest: rearrange reduction) + done + + +subsection {* The set of rational numbers *} + +constdefs + rationals :: "real set" ("\") + "\ \ {x. \m n. n \ 0 \ \x\ = real (m::nat) / real (n::nat)}" + + +subsection {* Main theorem *} + +text {* + The square root of any prime number (including @{text 2}) is + irrational. +*} + +theorem prime_sqrt_irrational: + "p \ prime \ x * x = real p \ 0 \ x \ x \ \" + apply (simp add: rationals_def real_abs_def) + apply clarify + apply (erule_tac P = "real m / real n * ?x = ?y" in rev_mp) + apply (simp del: real_of_nat_mult + add: real_divide_eq_eq prime_not_square + real_of_nat_mult [symmetric]) + done + +lemmas two_sqrt_irrational = + prime_sqrt_irrational [OF two_is_prime] + +end