diff -r b5d67f83576e -r 10fef94f40fc src/HOL/Decision_Procs/Approximation.thy --- a/src/HOL/Decision_Procs/Approximation.thy Thu Apr 23 12:17:51 2009 +0200 +++ b/src/HOL/Decision_Procs/Approximation.thy Thu Apr 23 12:17:51 2009 +0200 @@ -97,7 +97,7 @@ "(\j=0.. Ifloat (ub n ((F o^ j') s) (f j') x)" (is "?ub") proof - { fix x y z :: float have "x - y * z = x + - y * z" - by (cases x, cases y, cases z, simp add: plus_float.simps minus_float.simps uminus_float.simps times_float.simps algebra_simps) + by (cases x, cases y, cases z, simp add: plus_float.simps minus_float_def uminus_float.simps times_float.simps algebra_simps) } note diff_mult_minus = this { fix x :: float have "- (- x) = x" by (cases x, auto simp add: uminus_float.simps) } note minus_minus = this @@ -1462,7 +1462,8 @@ finally have "0 < Ifloat ((?horner x) ^ num)" . } ultimately show ?thesis - unfolding lb_exp.simps if_not_P[OF `\ 0 < x`] Let_def by (cases "floor_fl x", cases "x < - 1", auto simp add: le_float_def less_float_def normfloat) + unfolding lb_exp.simps if_not_P[OF `\ 0 < x`] Let_def + by (cases "floor_fl x", cases "x < - 1", auto simp add: float_power le_float_def less_float_def) qed lemma exp_boundaries': assumes "x \ 0"