diff -r 5d06ecfdb472 -r 1135b8de26c3 src/HOL/Multivariate_Analysis/Derivative.thy --- a/src/HOL/Multivariate_Analysis/Derivative.thy Mon Dec 28 01:26:34 2015 +0100 +++ b/src/HOL/Multivariate_Analysis/Derivative.thy Mon Dec 28 01:28:28 2015 +0100 @@ -372,7 +372,7 @@ fixes f :: "'a::euclidean_space \ 'b::real_normed_vector" assumes "(f has_derivative f') (at x within s)" and "(f has_derivative f'') (at x within s)" - and "\i\Basis. \e>0. \d. 0 < abs d \ abs d < e \ (x + d *\<^sub>R i) \ s" + and "\i\Basis. \e>0. \d. 0 < \d\ \ \d\ < e \ (x + d *\<^sub>R i) \ s" shows "f' = f''" proof - note as = assms(1,2)[unfolded has_derivative_def] @@ -415,9 +415,9 @@ obtain c where c: "0 < \c\" "\c\ < d \ x + c *\<^sub>R i \ s" using assms(3) i d(1) by blast have *: "norm (- ((1 / \c\) *\<^sub>R f' (c *\<^sub>R i)) + (1 / \c\) *\<^sub>R f'' (c *\<^sub>R i)) = - norm ((1 / abs c) *\<^sub>R (- (f' (c *\<^sub>R i)) + f'' (c *\<^sub>R i)))" + norm ((1 / \c\) *\<^sub>R (- (f' (c *\<^sub>R i)) + f'' (c *\<^sub>R i)))" unfolding scaleR_right_distrib by auto - also have "\ = norm ((1 / abs c) *\<^sub>R (c *\<^sub>R (- (f' i) + f'' i)))" + also have "\ = norm ((1 / \c\) *\<^sub>R (c *\<^sub>R (- (f' i) + f'' i)))" unfolding f'.scaleR f''.scaleR unfolding scaleR_right_distrib scaleR_minus_right by auto