diff -r 2b17622e1929 -r 138919f1a135 doc-src/TutorialI/Rules/Forward.thy --- a/doc-src/TutorialI/Rules/Forward.thy Wed Jul 11 13:57:01 2001 +0200 +++ b/doc-src/TutorialI/Rules/Forward.thy Wed Jul 11 14:00:48 2001 +0200 @@ -154,7 +154,7 @@ *} lemma relprime_dvd_mult: - "\ gcd(k,n)=1; k dvd m*n \ \ k dvd m"; + "\ gcd(k,n)=1; k dvd m*n \ \ k dvd m" apply (insert gcd_mult_distrib2 [of m k n]) apply simp apply (erule_tac t="m" in ssubst); @@ -169,11 +169,9 @@ \rulename{mod_div_equality} *}; -lemma div_mult_self_is_m: - "0 (m*n) div n = (m::nat)" -apply (insert mod_div_equality [of "m*n" n]) -apply simp -done +(*MOVED to Force.thy, which now depends only on Divides.thy +lemma div_mult_self_is_m: "0 (m*n) div n = (m::nat)" +*) lemma relprime_dvd_mult_iff: "gcd(k,n)=1 \ (k dvd m*n) = (k dvd m)"; by (blast intro: relprime_dvd_mult dvd_trans)