diff -r 0ec94bb9cec4 -r 1393c2340eec src/HOL/Partial_Function.thy --- a/src/HOL/Partial_Function.thy Sun Nov 26 13:19:52 2017 +0100 +++ b/src/HOL/Partial_Function.thy Sun Nov 26 21:08:32 2017 +0100 @@ -340,7 +340,7 @@ lemma admissible_image: assumes pfun: "partial_function_definitions le lub" - assumes adm: "ccpo.admissible lub le (P o g)" + assumes adm: "ccpo.admissible lub le (P \ g)" assumes inj: "\x y. f x = f y \ x = y" assumes inv: "\x. f (g x) = x" shows "ccpo.admissible (img_lub f g lub) (img_ord f le) P" @@ -350,10 +350,10 @@ by (auto simp: img_ord_def intro: chainI dest: chainD) assume "A \ {}" assume P_A: "\x\A. P x" - have "(P o g) (lub (f ` A))" using adm ch' + have "(P \ g) (lub (f ` A))" using adm ch' proof (rule ccpo.admissibleD) fix x assume "x \ f ` A" - with P_A show "(P o g) x" by (auto simp: inj[OF inv]) + with P_A show "(P \ g) x" by (auto simp: inj[OF inv]) qed(simp add: \A \ {}\) thus "P (img_lub f g lub A)" unfolding img_lub_def by simp qed