diff -r 0ec94bb9cec4 -r 1393c2340eec src/HOL/Tools/inductive.ML --- a/src/HOL/Tools/inductive.ML Sun Nov 26 13:19:52 2017 +0100 +++ b/src/HOL/Tools/inductive.ML Sun Nov 26 21:08:32 2017 +0100 @@ -108,9 +108,9 @@ val simp_thms1 = map mk_meta_eq - @{lemma "(~ True) = False" "(~ False) = True" - "(True --> P) = P" "(False --> P) = True" - "(P & True) = P" "(True & P) = P" + @{lemma "(\ True) = False" "(\ False) = True" + "(True \ P) = P" "(False \ P) = True" + "(P \ True) = P" "(True \ P) = P" by (fact simp_thms)+}; val simp_thms2 = @@ -420,7 +420,7 @@ (mono RS (fp_def RS (if coind then @{thm def_gfp_unfold} else @{thm def_lfp_unfold}))); - val rules = [refl, TrueI, @{lemma "~ False" by (rule notI)}, exI, conjI]; + val rules = [refl, TrueI, @{lemma "\ False" by (rule notI)}, exI, conjI]; val intrs = map_index (fn (i, intr) => Goal.prove_sorry ctxt [] [] intr (fn _ => EVERY @@ -451,7 +451,7 @@ val intrs = map dest_intr intr_ts ~~ intr_names; val rules1 = [disjE, exE, FalseE]; - val rules2 = [conjE, FalseE, @{lemma "~ True ==> R" by (rule notE [OF _ TrueI])}]; + val rules2 = [conjE, FalseE, @{lemma "\ True \ R" by (rule notE [OF _ TrueI])}]; fun prove_elim c = let