diff -r 0836569a8ffc -r 13e9c402308b src/HOL/Complex/ex/Sqrt_Script.thy --- a/src/HOL/Complex/ex/Sqrt_Script.thy Fri Jul 01 14:55:05 2005 +0200 +++ b/src/HOL/Complex/ex/Sqrt_Script.thy Fri Jul 01 17:41:10 2005 +0200 @@ -17,16 +17,16 @@ subsection {* Preliminaries *} -lemma prime_nonzero: "p \ prime \ p \ 0" +lemma prime_nonzero: "prime p \ p \ 0" by (force simp add: prime_def) lemma prime_dvd_other_side: - "n * n = p * (k * k) \ p \ prime \ p dvd n" + "n * n = p * (k * k) \ prime p \ p dvd n" apply (subgoal_tac "p dvd n * n", blast dest: prime_dvd_mult) apply (rule_tac j = "k * k" in dvd_mult_left, simp) done -lemma reduction: "p \ prime \ +lemma reduction: "prime p \ 0 < k \ k * k = p * (j * j) \ k < p * j \ 0 < j" apply (rule ccontr) apply (simp add: linorder_not_less) @@ -40,7 +40,7 @@ by (simp add: mult_ac) lemma prime_not_square: - "p \ prime \ (\k. 0 < k \ m * m \ p * (k * k))" + "prime p \ (\k. 0 < k \ m * m \ p * (k * k))" apply (induct m rule: nat_less_induct) apply clarify apply (frule prime_dvd_other_side, assumption) @@ -65,7 +65,7 @@ *} theorem prime_sqrt_irrational: - "p \ prime \ x * x = real p \ 0 \ x \ x \ \" + "prime p \ x * x = real p \ 0 \ x \ x \ \" apply (simp add: rationals_def real_abs_def) apply clarify apply (erule_tac P = "real m / real n * ?x = ?y" in rev_mp)