diff -r f3781c5fb03f -r 151bb79536a7 src/HOL/Library/Set_Algebras.thy --- a/src/HOL/Library/Set_Algebras.thy Tue Jul 12 22:54:37 2016 +0200 +++ b/src/HOL/Library/Set_Algebras.thy Wed Jul 13 14:28:15 2016 +0200 @@ -1,5 +1,7 @@ (* Title: HOL/Library/Set_Algebras.thy - Author: Jeremy Avigad and Kevin Donnelly; Florian Haftmann, TUM + Author: Jeremy Avigad + Author: Kevin Donnelly + Author: Florian Haftmann, TUM *) section \Algebraic operations on sets\ @@ -11,14 +13,14 @@ text \ This library lifts operations like addition and multiplication to sets. It was designed to support asymptotic calculations. See the - comments at the top of theory \BigO\. + comments at the top of @{file "BigO.thy"}. \ instantiation set :: (plus) plus begin -definition plus_set :: "'a::plus set \ 'a set \ 'a set" where - set_plus_def: "A + B = {c. \a\A. \b\B. c = a + b}" +definition plus_set :: "'a::plus set \ 'a set \ 'a set" + where set_plus_def: "A + B = {c. \a\A. \b\B. c = a + b}" instance .. @@ -27,8 +29,8 @@ instantiation set :: (times) times begin -definition times_set :: "'a::times set \ 'a set \ 'a set" where - set_times_def: "A * B = {c. \a\A. \b\B. c = a * b}" +definition times_set :: "'a::times set \ 'a set \ 'a set" + where set_times_def: "A * B = {c. \a\A. \b\B. c = a * b}" instance .. @@ -37,8 +39,7 @@ instantiation set :: (zero) zero begin -definition - set_zero[simp]: "(0::'a::zero set) = {0}" +definition set_zero[simp]: "(0::'a::zero set) = {0}" instance .. @@ -47,21 +48,20 @@ instantiation set :: (one) one begin -definition - set_one[simp]: "(1::'a::one set) = {1}" +definition set_one[simp]: "(1::'a::one set) = {1}" instance .. end -definition elt_set_plus :: "'a::plus \ 'a set \ 'a set" (infixl "+o" 70) where - "a +o B = {c. \b\B. c = a + b}" +definition elt_set_plus :: "'a::plus \ 'a set \ 'a set" (infixl "+o" 70) + where "a +o B = {c. \b\B. c = a + b}" -definition elt_set_times :: "'a::times \ 'a set \ 'a set" (infixl "*o" 80) where - "a *o B = {c. \b\B. c = a * b}" +definition elt_set_times :: "'a::times \ 'a set \ 'a set" (infixl "*o" 80) + where "a *o B = {c. \b\B. c = a * b}" -abbreviation (input) elt_set_eq :: "'a \ 'a set \ bool" (infix "=o" 50) where - "x =o A \ x \ A" +abbreviation (input) elt_set_eq :: "'a \ 'a set \ bool" (infix "=o" 50) + where "x =o A \ x \ A" instance set :: (semigroup_add) semigroup_add by standard (force simp add: set_plus_def add.assoc) @@ -98,19 +98,21 @@ lemma set_plus_intro2 [intro]: "b \ C \ a + b \ a +o C" by (auto simp add: elt_set_plus_def) -lemma set_plus_rearrange: - "((a::'a::comm_monoid_add) +o C) + (b +o D) = (a + b) +o (C + D)" +lemma set_plus_rearrange: "(a +o C) + (b +o D) = (a + b) +o (C + D)" + for a b :: "'a::comm_monoid_add" apply (auto simp add: elt_set_plus_def set_plus_def ac_simps) apply (rule_tac x = "ba + bb" in exI) - apply (auto simp add: ac_simps) + apply (auto simp add: ac_simps) apply (rule_tac x = "aa + a" in exI) apply (auto simp add: ac_simps) done -lemma set_plus_rearrange2: "(a::'a::semigroup_add) +o (b +o C) = (a + b) +o C" +lemma set_plus_rearrange2: "a +o (b +o C) = (a + b) +o C" + for a b :: "'a::semigroup_add" by (auto simp add: elt_set_plus_def add.assoc) -lemma set_plus_rearrange3: "((a::'a::semigroup_add) +o B) + C = a +o (B + C)" +lemma set_plus_rearrange3: "(a +o B) + C = a +o (B + C)" + for a :: "'a::semigroup_add" apply (auto simp add: elt_set_plus_def set_plus_def) apply (blast intro: ac_simps) apply (rule_tac x = "a + aa" in exI) @@ -121,7 +123,8 @@ apply (auto simp add: ac_simps) done -theorem set_plus_rearrange4: "C + ((a::'a::comm_monoid_add) +o D) = a +o (C + D)" +theorem set_plus_rearrange4: "C + (a +o D) = a +o (C + D)" + for a :: "'a::comm_monoid_add" apply (auto simp add: elt_set_plus_def set_plus_def ac_simps) apply (rule_tac x = "aa + ba" in exI) apply (auto simp add: ac_simps) @@ -133,13 +136,15 @@ lemma set_plus_mono [intro!]: "C \ D \ a +o C \ a +o D" by (auto simp add: elt_set_plus_def) -lemma set_plus_mono2 [intro]: "(C::'a::plus set) \ D \ E \ F \ C + E \ D + F" +lemma set_plus_mono2 [intro]: "C \ D \ E \ F \ C + E \ D + F" + for C D E F :: "'a::plus set" by (auto simp add: set_plus_def) lemma set_plus_mono3 [intro]: "a \ C \ a +o D \ C + D" by (auto simp add: elt_set_plus_def set_plus_def) -lemma set_plus_mono4 [intro]: "(a::'a::comm_monoid_add) \ C \ a +o D \ D + C" +lemma set_plus_mono4 [intro]: "a \ C \ a +o D \ D + C" + for a :: "'a::comm_monoid_add" by (auto simp add: elt_set_plus_def set_plus_def ac_simps) lemma set_plus_mono5: "a \ C \ B \ D \ a +o B \ C + D" @@ -166,33 +171,45 @@ apply auto done -lemma set_plus_mono4_b: "(a::'a::comm_monoid_add) : C \ x \ a +o D \ x \ D + C" +lemma set_plus_mono4_b: "a \ C \ x \ a +o D \ x \ D + C" + for a x :: "'a::comm_monoid_add" apply (frule set_plus_mono4) apply auto done -lemma set_zero_plus [simp]: "(0::'a::comm_monoid_add) +o C = C" +lemma set_zero_plus [simp]: "0 +o C = C" + for C :: "'a::comm_monoid_add set" by (auto simp add: elt_set_plus_def) -lemma set_zero_plus2: "(0::'a::comm_monoid_add) \ A \ B \ A + B" +lemma set_zero_plus2: "0 \ A \ B \ A + B" + for A B :: "'a::comm_monoid_add set" apply (auto simp add: set_plus_def) apply (rule_tac x = 0 in bexI) apply (rule_tac x = x in bexI) apply (auto simp add: ac_simps) done -lemma set_plus_imp_minus: "(a::'a::ab_group_add) : b +o C \ (a - b) \ C" +lemma set_plus_imp_minus: "a \ b +o C \ a - b \ C" + for a b :: "'a::ab_group_add" by (auto simp add: elt_set_plus_def ac_simps) -lemma set_minus_imp_plus: "(a::'a::ab_group_add) - b : C \ a \ b +o C" +lemma set_minus_imp_plus: "a - b \ C \ a \ b +o C" + for a b :: "'a::ab_group_add" apply (auto simp add: elt_set_plus_def ac_simps) apply (subgoal_tac "a = (a + - b) + b") - apply (rule bexI, assumption) - apply (auto simp add: ac_simps) + apply (rule bexI) + apply assumption + apply (auto simp add: ac_simps) done -lemma set_minus_plus: "(a::'a::ab_group_add) - b \ C \ a \ b +o C" - by (rule iffI, rule set_minus_imp_plus, assumption, rule set_plus_imp_minus) +lemma set_minus_plus: "a - b \ C \ a \ b +o C" + for a b :: "'a::ab_group_add" + apply (rule iffI) + apply (rule set_minus_imp_plus) + apply assumption + apply (rule set_plus_imp_minus) + apply assumption + done lemma set_times_intro [intro]: "a \ C \ b \ D \ a * b \ C * D" by (auto simp add: set_times_def) @@ -205,8 +222,8 @@ lemma set_times_intro2 [intro!]: "b \ C \ a * b \ a *o C" by (auto simp add: elt_set_times_def) -lemma set_times_rearrange: - "((a::'a::comm_monoid_mult) *o C) * (b *o D) = (a * b) *o (C * D)" +lemma set_times_rearrange: "(a *o C) * (b *o D) = (a * b) *o (C * D)" + for a b :: "'a::comm_monoid_mult" apply (auto simp add: elt_set_times_def set_times_def) apply (rule_tac x = "ba * bb" in exI) apply (auto simp add: ac_simps) @@ -214,12 +231,12 @@ apply (auto simp add: ac_simps) done -lemma set_times_rearrange2: - "(a::'a::semigroup_mult) *o (b *o C) = (a * b) *o C" +lemma set_times_rearrange2: "a *o (b *o C) = (a * b) *o C" + for a b :: "'a::semigroup_mult" by (auto simp add: elt_set_times_def mult.assoc) -lemma set_times_rearrange3: - "((a::'a::semigroup_mult) *o B) * C = a *o (B * C)" +lemma set_times_rearrange3: "(a *o B) * C = a *o (B * C)" + for a :: "'a::semigroup_mult" apply (auto simp add: elt_set_times_def set_times_def) apply (blast intro: ac_simps) apply (rule_tac x = "a * aa" in exI) @@ -230,8 +247,8 @@ apply (auto simp add: ac_simps) done -theorem set_times_rearrange4: - "C * ((a::'a::comm_monoid_mult) *o D) = a *o (C * D)" +theorem set_times_rearrange4: "C * (a *o D) = a *o (C * D)" + for a :: "'a::comm_monoid_mult" apply (auto simp add: elt_set_times_def set_times_def ac_simps) apply (rule_tac x = "aa * ba" in exI) apply (auto simp add: ac_simps) @@ -243,13 +260,15 @@ lemma set_times_mono [intro]: "C \ D \ a *o C \ a *o D" by (auto simp add: elt_set_times_def) -lemma set_times_mono2 [intro]: "(C::'a::times set) \ D \ E \ F \ C * E \ D * F" +lemma set_times_mono2 [intro]: "C \ D \ E \ F \ C * E \ D * F" + for C D E F :: "'a::times set" by (auto simp add: set_times_def) lemma set_times_mono3 [intro]: "a \ C \ a *o D \ C * D" by (auto simp add: elt_set_times_def set_times_def) -lemma set_times_mono4 [intro]: "(a::'a::comm_monoid_mult) : C \ a *o D \ D * C" +lemma set_times_mono4 [intro]: "a \ C \ a *o D \ D * C" + for a :: "'a::comm_monoid_mult" by (auto simp add: elt_set_times_def set_times_def ac_simps) lemma set_times_mono5: "a \ C \ B \ D \ a *o B \ C * D" @@ -276,30 +295,31 @@ apply auto done -lemma set_times_mono4_b: "(a::'a::comm_monoid_mult) \ C \ x \ a *o D \ x \ D * C" +lemma set_times_mono4_b: "a \ C \ x \ a *o D \ x \ D * C" + for a x :: "'a::comm_monoid_mult" apply (frule set_times_mono4) apply auto done -lemma set_one_times [simp]: "(1::'a::comm_monoid_mult) *o C = C" +lemma set_one_times [simp]: "1 *o C = C" + for C :: "'a::comm_monoid_mult set" by (auto simp add: elt_set_times_def) -lemma set_times_plus_distrib: - "(a::'a::semiring) *o (b +o C) = (a * b) +o (a *o C)" +lemma set_times_plus_distrib: "a *o (b +o C) = (a * b) +o (a *o C)" + for a b :: "'a::semiring" by (auto simp add: elt_set_plus_def elt_set_times_def ring_distribs) -lemma set_times_plus_distrib2: - "(a::'a::semiring) *o (B + C) = (a *o B) + (a *o C)" +lemma set_times_plus_distrib2: "a *o (B + C) = (a *o B) + (a *o C)" + for a :: "'a::semiring" apply (auto simp add: set_plus_def elt_set_times_def ring_distribs) apply blast apply (rule_tac x = "b + bb" in exI) apply (auto simp add: ring_distribs) done -lemma set_times_plus_distrib3: "((a::'a::semiring) +o C) * D \ a *o D + C * D" - apply (auto simp add: - elt_set_plus_def elt_set_times_def set_times_def - set_plus_def ring_distribs) +lemma set_times_plus_distrib3: "(a +o C) * D \ a *o D + C * D" + for a :: "'a::semiring" + apply (auto simp: elt_set_plus_def elt_set_times_def set_times_def set_plus_def ring_distribs) apply auto done @@ -307,23 +327,25 @@ set_times_plus_distrib set_times_plus_distrib2 -lemma set_neg_intro: "(a::'a::ring_1) \ (- 1) *o C \ - a \ C" +lemma set_neg_intro: "a \ (- 1) *o C \ - a \ C" + for a :: "'a::ring_1" by (auto simp add: elt_set_times_def) -lemma set_neg_intro2: "(a::'a::ring_1) \ C \ - a \ (- 1) *o C" +lemma set_neg_intro2: "a \ C \ - a \ (- 1) *o C" + for a :: "'a::ring_1" by (auto simp add: elt_set_times_def) lemma set_plus_image: "S + T = (\(x, y). x + y) ` (S \ T)" - unfolding set_plus_def by (fastforce simp: image_iff) + by (fastforce simp: set_plus_def image_iff) lemma set_times_image: "S * T = (\(x, y). x * y) ` (S \ T)" - unfolding set_times_def by (fastforce simp: image_iff) + by (fastforce simp: set_times_def image_iff) lemma finite_set_plus: "finite s \ finite t \ finite (s + t)" - unfolding set_plus_image by simp + by (simp add: set_plus_image) lemma finite_set_times: "finite s \ finite t \ finite (s * t)" - unfolding set_times_image by simp + by (simp add: set_times_image) lemma set_setsum_alt: assumes fin: "finite I"