diff -r eec472dae593 -r 154dc6ec0041 src/HOL/Predicate.thy --- a/src/HOL/Predicate.thy Mon Mar 12 15:12:22 2012 +0100 +++ b/src/HOL/Predicate.thy Mon Mar 12 21:41:11 2012 +0100 @@ -123,7 +123,7 @@ by (simp add: minus_pred_def) instance proof -qed (auto intro!: pred_eqI simp add: uminus_apply minus_apply INF_apply SUP_apply) +qed (auto intro!: pred_eqI) end @@ -143,7 +143,7 @@ lemma bind_bind: "(P \= Q) \= R = P \= (\x. Q x \= R)" - by (rule pred_eqI) (auto simp add: SUP_apply) + by (rule pred_eqI) auto lemma bind_single: "P \= single = P" @@ -163,7 +163,7 @@ lemma Sup_bind: "(\A \= f) = \((\x. x \= f) ` A)" - by (rule pred_eqI) (auto simp add: SUP_apply) + by (rule pred_eqI) auto lemma pred_iffI: assumes "\x. eval A x \ eval B x"