diff -r 5a2e05eb7001 -r 1655c4a3516b src/HOL/Library/Signed_Division.thy --- a/src/HOL/Library/Signed_Division.thy Tue Jan 14 18:46:58 2025 +0000 +++ b/src/HOL/Library/Signed_Division.thy Tue Jan 14 21:50:44 2025 +0000 @@ -104,8 +104,7 @@ "(a :: int) sdiv 1 = a" "(a :: int) sdiv 0 = 0" "(a :: int) sdiv -1 = -a" - apply (auto simp: signed_divide_int_def sgn_if) - done + by (auto simp: signed_divide_int_def sgn_if) lemma smod_int_mod_0 [simp]: "x smod (0 :: int) = x" @@ -120,33 +119,26 @@ by (auto simp: signed_divide_int_def sgn_div_eq_sgn_mult sgn_mult) lemma int_sdiv_same_is_1 [simp]: - "a \ 0 \ ((a :: int) sdiv b = a) = (b = 1)" - apply (rule iffI) - apply (clarsimp simp: signed_divide_int_def) - apply (subgoal_tac "b > 0") - apply (case_tac "a > 0") - apply (clarsimp simp: sgn_if) - apply (simp_all add: not_less algebra_split_simps sgn_if split: if_splits) - using int_div_less_self [of a b] apply linarith - apply (metis add.commute add.inverse_inverse group_cancel.rule0 int_div_less_self linorder_neqE_linordered_idom neg_0_le_iff_le not_less verit_comp_simplify1(1) zless_imp_add1_zle) - apply (metis div_minus_right neg_imp_zdiv_neg_iff neg_le_0_iff_le not_less order.not_eq_order_implies_strict) - apply (metis abs_le_zero_iff abs_of_nonneg neg_imp_zdiv_nonneg_iff order.not_eq_order_implies_strict) - done + assumes "a \ 0" + shows "((a :: int) sdiv b = a) = (b = 1)" +proof - + have "b = 1" if "a sdiv b = a" + proof - + have "b>0" + by (smt (verit, ccfv_threshold) assms mult_cancel_left2 sgn_if sgn_mult + sgn_sdiv_eq_sgn_mult that) + then show ?thesis + by (smt (verit) assms dvd_eq_mod_eq_0 int_div_less_self of_bool_eq(1,2) sgn_if + signed_divide_int_eq_divide_int that zdiv_zminus1_eq_if) + qed + then show ?thesis + by auto +qed lemma int_sdiv_negated_is_minus1 [simp]: "a \ 0 \ ((a :: int) sdiv b = - a) = (b = -1)" - apply (clarsimp simp: signed_divide_int_def) - apply (rule iffI) - apply (subgoal_tac "b < 0") - apply (case_tac "a > 0") - apply (clarsimp simp: sgn_if algebra_split_simps not_less) - apply (case_tac "sgn (a * b) = -1") - apply (simp_all add: not_less algebra_split_simps sgn_if split: if_splits) - apply (metis add.inverse_inverse int_div_less_self int_one_le_iff_zero_less less_le neg_0_less_iff_less) - apply (metis add.inverse_inverse div_minus_right int_div_less_self int_one_le_iff_zero_less less_le neg_0_less_iff_less) - apply (metis less_le neg_less_0_iff_less not_less pos_imp_zdiv_neg_iff) - apply (metis div_minus_right dual_order.eq_iff neg_imp_zdiv_nonneg_iff neg_less_0_iff_less) - done + using int_sdiv_same_is_1 [of _ "-b"] + using signed_divide_int_def by fastforce lemma sdiv_int_range: \a sdiv b \ {- \a\..\a\}\ for a b :: int @@ -178,9 +170,8 @@ "\ 0 \ a; b < 0 \ \ 0 \ (a :: int) smod b" "\ a \ 0; b < 0 \ \ (a :: int) smod b \ 0" "\ a \ 0; b < 0 \ \ b \ (a :: int) smod b" - apply (insert smod_int_range [where a=a and b=b]) - apply (auto simp: add1_zle_eq smod_int_alt_def sgn_if) - done + using smod_int_range [where a=a and b=b] + by (auto simp: add1_zle_eq smod_int_alt_def sgn_if) lemma smod_mod_positive: "\ 0 \ (a :: int); 0 \ b \ \ a smod b = a mod b"