diff -r 91e451bc0f1f -r 16a8991ab398 src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy --- a/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy Thu Apr 27 11:06:47 2017 +0100 +++ b/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy Thu Apr 27 15:59:00 2017 +0100 @@ -683,7 +683,7 @@ by (simp add: AE_iff_measurable) show ?thesis proof (rule has_integral_spike_eq[symmetric]) - show "\x\\ - N. f x = g x" using N(3) by auto + show "\x. x\\ - N \ f x = g x" using N(3) by auto show "negligible N" unfolding negligible_def proof (intro allI) @@ -2246,7 +2246,7 @@ proof show "(\x. norm (g x)) integrable_on s" using le norm_ge_zero[of "f _"] - by (intro integrable_spike_finite[OF _ _ g, where s="{}"]) + by (intro integrable_spike_finite[OF _ _ g, of "{}"]) (auto intro!: abs_of_nonneg intro: order_trans simp del: norm_ge_zero) qed fact show "set_borel_measurable lebesgue s f" @@ -2266,9 +2266,9 @@ unfolding absolutely_integrable_on_def proof show "(\x. norm (h x)) integrable_on s" - proof (intro integrable_spike_finite[OF _ _ h, where s="{}"] ballI) + proof (intro integrable_spike_finite[OF _ _ h, of "{}"] ballI) fix x assume "x \ s - {}" then show "norm (h x) = h x" - using order_trans[OF norm_ge_zero le[THEN bspec, of x]] by auto + by (metis Diff_empty abs_of_nonneg bot_set_def le norm_ge_zero order_trans real_norm_def) qed auto qed fact have 2: "set_borel_measurable lebesgue s (f k)" for k