diff -r b84f3c3c27f2 -r 16a99bc76717 src/HOL/NumberTheory/Factorization.thy --- a/src/HOL/NumberTheory/Factorization.thy Wed Oct 24 20:17:50 2007 +0200 +++ b/src/HOL/NumberTheory/Factorization.thy Wed Oct 24 20:38:27 2007 +0200 @@ -291,7 +291,8 @@ lemma primel_prod_less: "primel (x # xs) ==> primel ys ==> prod (x # xs) = prod ys ==> prod xs < prod ys" - by (metis Nat.less_asym linorder_neqE_nat mult_less_cancel2 nat_0_less_mult_iff nat_less_le nat_mult_1 prime_def primel_hd_tl primel_prod_gz prod.simps(2)) + by (metis Nat.less_asym linorder_neqE_nat mult_less_cancel2 nat_0_less_mult_iff + nat_less_le nat_mult_1 prime_def primel_hd_tl primel_prod_gz prod.simps(2)) lemma prod_one_empty: "primel xs ==> p * prod xs = p ==> prime p ==> xs = []" @@ -322,7 +323,15 @@ apply (simp add: perm_sing_eq primel_hd_tl) apply (rule_tac p = a in prod_one_empty) apply simp_all - apply (metis nat_0_less_mult_iff nat_mult_eq_cancel1 perm_primel perm_prod primel_prod_gz primel_prod_less primel_tl prod.simps(2)) + apply (erule uniq_ex_aux) + apply (auto intro: primel_tl perm_primel simp add: primel_hd_tl) + apply (rule_tac k = a and n = "prod list" and m = "prod x" in mult_left_cancel) + apply (rule_tac [3] x = a in primel_prod_less) + apply (rule_tac [2] prod_xy_prod) + apply (rule_tac [2] s = "prod ys" in HOL.trans) + apply (erule_tac [3] perm_prod) + apply (erule_tac [5] perm_prod [symmetric]) + apply (auto intro: perm_primel prime_g_zero) done lemma perm_nondec_unique: