diff -r 7538b5f301ea -r 16d98ef49a2c src/HOL/Analysis/Infinite_Set_Sum.thy --- a/src/HOL/Analysis/Infinite_Set_Sum.thy Wed Jul 18 17:01:12 2018 +0200 +++ b/src/HOL/Analysis/Infinite_Set_Sum.thy Tue Jul 17 12:23:37 2018 +0200 @@ -86,14 +86,14 @@ -definition abs_summable_on :: +definition%important abs_summable_on :: "('a \ 'b :: {banach, second_countable_topology}) \ 'a set \ bool" (infix "abs'_summable'_on" 50) where "f abs_summable_on A \ integrable (count_space A) f" -definition infsetsum :: +definition%important infsetsum :: "('a \ 'b :: {banach, second_countable_topology}) \ 'a set \ 'b" where "infsetsum f A = lebesgue_integral (count_space A) f" @@ -553,7 +553,7 @@ (insert assms, auto simp: bij_betw_def) qed -lemma infsetsum_reindex: +theorem infsetsum_reindex: assumes "inj_on g A" shows "infsetsum f (g ` A) = infsetsum (\x. f (g x)) A" by (intro infsetsum_reindex_bij_betw [symmetric] inj_on_imp_bij_betw assms) @@ -607,7 +607,7 @@ unfolding abs_summable_on_def infsetsum_def by (rule Bochner_Integration.integral_norm_bound) -lemma infsetsum_Sigma: +theorem infsetsum_Sigma: fixes A :: "'a set" and B :: "'a \ 'b set" assumes [simp]: "countable A" and "\i. countable (B i)" assumes summable: "f abs_summable_on (Sigma A B)" @@ -692,7 +692,7 @@ finally show ?thesis . qed -lemma abs_summable_on_Sigma_iff: +theorem abs_summable_on_Sigma_iff: assumes [simp]: "countable A" and "\x. x \ A \ countable (B x)" shows "f abs_summable_on Sigma A B \ (\x\A. (\y. f (x, y)) abs_summable_on B x) \ @@ -783,7 +783,7 @@ by (intro abs_summable_on_comparison_test' [OF abs_summable_on_Sigma_project1[OF assms]] norm_infsetsum_bound) -lemma infsetsum_prod_PiE: +theorem infsetsum_prod_PiE: fixes f :: "'a \ 'b \ 'c :: {real_normed_field,banach,second_countable_topology}" assumes finite: "finite A" and countable: "\x. x \ A \ countable (B x)" assumes summable: "\x. x \ A \ f x abs_summable_on B x"