diff -r ac1706cdde25 -r 18e94864fd0f src/HOL/Library/Boolean_Algebra.thy --- a/src/HOL/Library/Boolean_Algebra.thy Sat Apr 20 13:44:16 2019 +0000 +++ b/src/HOL/Library/Boolean_Algebra.thy Sat Apr 20 18:02:20 2019 +0000 @@ -8,7 +8,7 @@ imports Main begin -locale boolean = +locale boolean_algebra = fixes conj :: "'a \ 'a \ 'a" (infixr "\" 70) and disj :: "'a \ 'a \ 'a" (infixr "\" 65) and compl :: "'a \ 'a" ("\ _" [81] 80) @@ -38,8 +38,8 @@ lemmas conj_ac = conj.assoc conj.commute conj.left_commute lemmas disj_ac = disj.assoc disj.commute disj.left_commute -lemma dual: "boolean disj conj compl one zero" - apply (rule boolean.intro) +lemma dual: "boolean_algebra disj conj compl one zero" + apply (rule boolean_algebra.intro) apply (rule disj_assoc) apply (rule conj_assoc) apply (rule disj_commute) @@ -143,28 +143,28 @@ subsection \Disjunction\ lemma disj_absorb [simp]: "x \ x = x" - by (rule boolean.conj_absorb [OF dual]) + by (rule boolean_algebra.conj_absorb [OF dual]) lemma disj_one_right [simp]: "x \ \ = \" - by (rule boolean.conj_zero_right [OF dual]) + by (rule boolean_algebra.conj_zero_right [OF dual]) lemma compl_zero [simp]: "\ \ = \" - by (rule boolean.compl_one [OF dual]) + by (rule boolean_algebra.compl_one [OF dual]) lemma disj_zero_left [simp]: "\ \ x = x" - by (rule boolean.conj_one_left [OF dual]) + by (rule boolean_algebra.conj_one_left [OF dual]) lemma disj_one_left [simp]: "\ \ x = \" - by (rule boolean.conj_zero_left [OF dual]) + by (rule boolean_algebra.conj_zero_left [OF dual]) lemma disj_cancel_left [simp]: "\ x \ x = \" - by (rule boolean.conj_cancel_left [OF dual]) + by (rule boolean_algebra.conj_cancel_left [OF dual]) lemma disj_left_absorb [simp]: "x \ (x \ y) = x \ y" - by (rule boolean.conj_left_absorb [OF dual]) + by (rule boolean_algebra.conj_left_absorb [OF dual]) lemma disj_conj_distrib2: "(y \ z) \ x = (y \ x) \ (z \ x)" - by (rule boolean.conj_disj_distrib2 [OF dual]) + by (rule boolean_algebra.conj_disj_distrib2 [OF dual]) lemmas disj_conj_distribs = disj_conj_distrib disj_conj_distrib2 @@ -189,14 +189,14 @@ qed lemma de_Morgan_disj [simp]: "\ (x \ y) = \ x \ \ y" - by (rule boolean.de_Morgan_conj [OF dual]) + by (rule boolean_algebra.de_Morgan_conj [OF dual]) end subsection \Symmetric Difference\ -locale boolean_xor = boolean + +locale boolean_algebra_xor = boolean_algebra + fixes xor :: "'a \ 'a \ 'a" (infixr "\" 65) assumes xor_def: "x \ y = (x \ \ y) \ (\ x \ y)" begin