diff -r 970964690b3d -r 199d1d5bb17e src/HOL/Probability/Infinite_Product_Measure.thy --- a/src/HOL/Probability/Infinite_Product_Measure.thy Wed Oct 10 12:12:17 2012 +0200 +++ b/src/HOL/Probability/Infinite_Product_Measure.thy Wed Oct 10 12:12:18 2012 +0200 @@ -8,31 +8,6 @@ imports Probability_Measure Caratheodory begin -lemma (in product_sigma_finite) - assumes IJ: "I \ J = {}" "finite I" "finite J" and A: "A \ sets (Pi\<^isub>M (I \ J) M)" - shows emeasure_fold_integral: - "emeasure (Pi\<^isub>M (I \ J) M) A = (\\<^isup>+x. emeasure (Pi\<^isub>M J M) (merge I x J -` A \ space (Pi\<^isub>M J M)) \Pi\<^isub>M I M)" (is ?I) - and emeasure_fold_measurable: - "(\x. emeasure (Pi\<^isub>M J M) (merge I x J -` A \ space (Pi\<^isub>M J M))) \ borel_measurable (Pi\<^isub>M I M)" (is ?B) -proof - - interpret I: finite_product_sigma_finite M I by default fact - interpret J: finite_product_sigma_finite M J by default fact - interpret IJ: pair_sigma_finite "Pi\<^isub>M I M" "Pi\<^isub>M J M" .. - have merge: "(\(x, y). merge I x J y) -` A \ space (Pi\<^isub>M I M \\<^isub>M Pi\<^isub>M J M) \ sets (Pi\<^isub>M I M \\<^isub>M Pi\<^isub>M J M)" - by (intro measurable_sets[OF _ A] measurable_merge assms) - - show ?I - apply (subst distr_merge[symmetric, OF IJ]) - apply (subst emeasure_distr[OF measurable_merge[OF IJ(1)] A]) - apply (subst IJ.emeasure_pair_measure_alt[OF merge]) - apply (auto intro!: positive_integral_cong arg_cong2[where f=emeasure] simp: space_pair_measure) - done - - show ?B - using IJ.measurable_emeasure_Pair1[OF merge] - by (simp add: vimage_compose[symmetric] comp_def space_pair_measure cong: measurable_cong) -qed - lemma restrict_extensional_sub[intro]: "A \ B \ restrict f A \ extensional B" unfolding restrict_def extensional_def by auto