diff -r a931f1b45151 -r 1b3cddf41b2d doc-src/Logics/LK.tex --- a/doc-src/Logics/LK.tex Thu Nov 11 12:44:43 1993 +0100 +++ b/doc-src/Logics/LK.tex Thu Nov 11 13:18:49 1993 +0100 @@ -40,7 +40,7 @@ This technique lets Isabelle formalize sequent calculus rules, where the comma is the associative operator: \[ \infer[\conj\hbox{-left}] - {\Gamma,P\conj Q,\Delta \turn \Theta} + {\Gamma,P\conj Q,\Delta \turn \Theta} {\Gamma,P,Q,\Delta \turn \Theta} \] Multiple unifiers occur whenever this is resolved against a goal containing more than one conjunction on the left. Explicit formalization of sequents @@ -56,25 +56,25 @@ \begin{figure} \begin{center} \begin{tabular}{rrr} - \it name &\it meta-type & \it description \\ - \idx{Trueprop}& $o\To prop$ & coercion to $prop$ \\ - \idx{Seqof} & $[o,sobj]\To sobj$ & singleton sequence \\ - \idx{Not} & $o\To o$ & negation ($\neg$) \\ - \idx{True} & $o$ & tautology ($\top$) \\ - \idx{False} & $o$ & absurdity ($\bot$) + \it name &\it meta-type & \it description \\ + \idx{Trueprop}& $o\To prop$ & coercion to $prop$ \\ + \idx{Seqof} & $[o,sobj]\To sobj$ & singleton sequence \\ + \idx{Not} & $o\To o$ & negation ($\neg$) \\ + \idx{True} & $o$ & tautology ($\top$) \\ + \idx{False} & $o$ & absurdity ($\bot$) \end{tabular} \end{center} \subcaption{Constants} \begin{center} \begin{tabular}{llrrr} - \it symbol &\it name &\it meta-type & \it precedence & \it description \\ + \it symbol &\it name &\it meta-type & \it precedence & \it description \\ \idx{ALL} & \idx{All} & $(\alpha\To o)\To o$ & 10 & - universal quantifier ($\forall$) \\ + universal quantifier ($\forall$) \\ \idx{EX} & \idx{Ex} & $(\alpha\To o)\To o$ & 10 & - existential quantifier ($\exists$) \\ + existential quantifier ($\exists$) \\ \idx{THE} & \idx{The} & $(\alpha\To o)\To \alpha$ & 10 & - definite description ($\iota$) + definite description ($\iota$) \end{tabular} \end{center} \subcaption{Binders} @@ -98,7 +98,7 @@ \begin{center} \begin{tabular}{rrr} - \it external & \it internal & \it description \\ + \it external & \it internal & \it description \\ \tt $\Gamma$ |- $\Delta$ & \tt Trueprop($\Gamma$, $\Delta$) & sequent $\Gamma\turn \Delta$ \end{tabular} @@ -121,15 +121,15 @@ & | & formula \\[2ex] formula & = & \hbox{expression of type~$o$} \\ - & | & term " = " term \\ - & | & "\ttilde\ " formula \\ - & | & formula " \& " formula \\ - & | & formula " | " formula \\ - & | & formula " --> " formula \\ - & | & formula " <-> " formula \\ - & | & "ALL~" id~id^* " . " formula \\ - & | & "EX~~" id~id^* " . " formula \\ - & | & "THE~" id~ " . " formula + & | & term " = " term \\ + & | & "\ttilde\ " formula \\ + & | & formula " \& " formula \\ + & | & formula " | " formula \\ + & | & formula " --> " formula \\ + & | & formula " <-> " formula \\ + & | & "ALL~" id~id^* " . " formula \\ + & | & "EX~~" id~id^* " . " formula \\ + & | & "THE~" id~ " . " formula \end{array} \] \caption{Grammar of {\tt LK}} \label{lk-grammar} @@ -166,8 +166,13 @@ \idx{notL} $H, $G |- $E, P ==> $H, ~P, $G |- $E \idx{FalseL} $H, False, $G |- $E +\end{ttbox} \subcaption{Propositional rules} +\caption{Rules of {\tt LK}} \label{lk-rules} +\end{figure} +\begin{figure} +\begin{ttbox} \idx{allR} (!!x.$H|- $E, P(x), $F) ==> $H|- $E, ALL x.P(x), $F \idx{allL} $H, P(x), $G, ALL x.P(x) |- $E ==> $H, ALL x.P(x), $G|- $E @@ -176,10 +181,10 @@ \idx{The} [| $H |- $E, P(a), $F; !!x.$H, P(x) |- $E, x=a, $F |] ==> $H |- $E, P(THE x.P(x)), $F +\end{ttbox} \subcaption{Quantifier rules} -\end{ttbox} -\caption{Rules of {\tt LK}} \label{lk-rules} +\caption{Rules of {\tt LK} (continued)} \label{lk-rules2} \end{figure} @@ -223,13 +228,13 @@ as a formula. The theory has the \ML\ identifier \ttindexbold{LK.thy}. -Figure~\ref{lk-rules} presents the rules. The connective $\bimp$ is -defined using $\conj$ and $\imp$. The axiom for basic sequents is -expressed in a form that provides automatic thinning: redundant formulae -are simply ignored. The other rules are expressed in the form most -suitable for backward proof --- they do not require exchange or contraction -rules. The contraction rules are actually derivable (via cut) in this -formulation. +Figures~\ref{lk-rules} and~\ref{lk-rules2} present the rules. The +connective $\bimp$ is defined using $\conj$ and $\imp$. The axiom for +basic sequents is expressed in a form that provides automatic thinning: +redundant formulae are simply ignored. The other rules are expressed in +the form most suitable for backward proof --- they do not require exchange +or contraction rules. The contraction rules are actually derivable (via +cut) in this formulation. Figure~\ref{lk-derived} presents derived rules, including rules for $\bimp$. The weakened quantifier rules discard each quantification after a