diff -r 6a973bd43949 -r 1bc3b688548c src/HOL/MicroJava/DFA/Kildall.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/MicroJava/DFA/Kildall.thy Tue Nov 24 14:37:23 2009 +0100 @@ -0,0 +1,495 @@ +(* Title: HOL/MicroJava/BV/Kildall.thy + Author: Tobias Nipkow, Gerwin Klein + Copyright 2000 TUM +*) + +header {* \isaheader{Kildall's Algorithm}\label{sec:Kildall} *} + +theory Kildall +imports SemilatAlg While_Combinator +begin + + +consts + iter :: "'s binop \ 's step_type \ + 's list \ nat set \ 's list \ nat set" + propa :: "'s binop \ (nat \ 's) list \ 's list \ nat set \ 's list * nat set" + +primrec +"propa f [] ss w = (ss,w)" +"propa f (q'#qs) ss w = (let (q,t) = q'; + u = t +_f ss!q; + w' = (if u = ss!q then w else insert q w) + in propa f qs (ss[q := u]) w')" + +defs iter_def: +"iter f step ss w == + while (%(ss,w). w \ {}) + (%(ss,w). let p = SOME p. p \ w + in propa f (step p (ss!p)) ss (w-{p})) + (ss,w)" + +constdefs + unstables :: "'s ord \ 's step_type \ 's list \ nat set" +"unstables r step ss == {p. p < size ss \ \stable r step ss p}" + + kildall :: "'s ord \ 's binop \ 's step_type \ 's list \ 's list" +"kildall r f step ss == fst(iter f step ss (unstables r step ss))" + +consts merges :: "'s binop \ (nat \ 's) list \ 's list \ 's list" +primrec +"merges f [] ss = ss" +"merges f (p'#ps) ss = (let (p,s) = p' in merges f ps (ss[p := s +_f ss!p]))" + + +lemmas [simp] = Let_def Semilat.le_iff_plus_unchanged [OF Semilat.intro, symmetric] + + +lemma (in Semilat) nth_merges: + "\ss. \p < length ss; ss \ list n A; \(p,t)\set ps. p t\A \ \ + (merges f ps ss)!p = map snd [(p',t') \ ps. p'=p] ++_f ss!p" + (is "\ss. \_; _; ?steptype ps\ \ ?P ss ps") +proof (induct ps) + show "\ss. ?P ss []" by simp + + fix ss p' ps' + assume ss: "ss \ list n A" + assume l: "p < length ss" + assume "?steptype (p'#ps')" + then obtain a b where + p': "p'=(a,b)" and ab: "aA" and ps': "?steptype ps'" + by (cases p') auto + assume "\ss. p< length ss \ ss \ list n A \ ?steptype ps' \ ?P ss ps'" + from this [OF _ _ ps'] have IH: "\ss. ss \ list n A \ p < length ss \ ?P ss ps'" . + + from ss ab + have "ss[a := b +_f ss!a] \ list n A" by (simp add: closedD) + moreover + from calculation l + have "p < length (ss[a := b +_f ss!a])" by simp + ultimately + have "?P (ss[a := b +_f ss!a]) ps'" by (rule IH) + with p' l + show "?P ss (p'#ps')" by simp +qed + + +(** merges **) + +lemma length_merges [rule_format, simp]: + "\ss. size(merges f ps ss) = size ss" + by (induct_tac ps, auto) + + +lemma (in Semilat) merges_preserves_type_lemma: +shows "\xs. xs \ list n A \ (\(p,x) \ set ps. p x\A) + \ merges f ps xs \ list n A" +apply (insert closedI) +apply (unfold closed_def) +apply (induct_tac ps) + apply simp +apply clarsimp +done + +lemma (in Semilat) merges_preserves_type [simp]: + "\ xs \ list n A; \(p,x) \ set ps. p x\A \ + \ merges f ps xs \ list n A" +by (simp add: merges_preserves_type_lemma) + +lemma (in Semilat) merges_incr_lemma: + "\xs. xs \ list n A \ (\(p,x)\set ps. p x \ A) \ xs <=[r] merges f ps xs" +apply (induct_tac ps) + apply simp +apply simp +apply clarify +apply (rule order_trans) + apply simp + apply (erule list_update_incr) + apply simp + apply simp +apply (blast intro!: listE_set intro: closedD listE_length [THEN nth_in]) +done + +lemma (in Semilat) merges_incr: + "\ xs \ list n A; \(p,x)\set ps. p x \ A \ + \ xs <=[r] merges f ps xs" + by (simp add: merges_incr_lemma) + + +lemma (in Semilat) merges_same_conv [rule_format]: + "(\xs. xs \ list n A \ (\(p,x)\set ps. p x\A) \ + (merges f ps xs = xs) = (\(p,x)\set ps. x <=_r xs!p))" + apply (induct_tac ps) + apply simp + apply clarsimp + apply (rename_tac p x ps xs) + apply (rule iffI) + apply (rule context_conjI) + apply (subgoal_tac "xs[p := x +_f xs!p] <=[r] xs") + apply (drule_tac p = p in le_listD) + apply simp + apply simp + apply (erule subst, rule merges_incr) + apply (blast intro!: listE_set intro: closedD listE_length [THEN nth_in]) + apply clarify + apply (rule conjI) + apply simp + apply (blast dest: boundedD) + apply blast + apply clarify + apply (erule allE) + apply (erule impE) + apply assumption + apply (drule bspec) + apply assumption + apply (simp add: le_iff_plus_unchanged [THEN iffD1] list_update_same_conv [THEN iffD2]) + apply blast + apply clarify + apply (simp add: le_iff_plus_unchanged [THEN iffD1] list_update_same_conv [THEN iffD2]) + done + + +lemma (in Semilat) list_update_le_listI [rule_format]: + "set xs <= A \ set ys <= A \ xs <=[r] ys \ p < size xs \ + x <=_r ys!p \ x\A \ xs[p := x +_f xs!p] <=[r] ys" + apply(insert semilat) + apply (unfold Listn.le_def lesub_def semilat_def) + apply (simp add: list_all2_conv_all_nth nth_list_update) + done + +lemma (in Semilat) merges_pres_le_ub: + assumes "set ts <= A" and "set ss <= A" + and "\(p,t)\set ps. t <=_r ts!p \ t \ A \ p < size ts" and "ss <=[r] ts" + shows "merges f ps ss <=[r] ts" +proof - + { fix t ts ps + have + "\qs. \set ts <= A; \(p,t)\set ps. t <=_r ts!p \ t \ A \ p< size ts \ \ + set qs <= set ps \ + (\ss. set ss <= A \ ss <=[r] ts \ merges f qs ss <=[r] ts)" + apply (induct_tac qs) + apply simp + apply (simp (no_asm_simp)) + apply clarify + apply (rotate_tac -2) + apply simp + apply (erule allE, erule impE, erule_tac [2] mp) + apply (drule bspec, assumption) + apply (simp add: closedD) + apply (drule bspec, assumption) + apply (simp add: list_update_le_listI) + done + } note this [dest] + + from prems show ?thesis by blast +qed + + +(** propa **) + + +lemma decomp_propa: + "\ss w. (\(q,t)\set qs. q < size ss) \ + propa f qs ss w = + (merges f qs ss, {q. \t. (q,t)\set qs \ t +_f ss!q \ ss!q} Un w)" + apply (induct qs) + apply simp + apply (simp (no_asm)) + apply clarify + apply simp + apply (rule conjI) + apply blast + apply (simp add: nth_list_update) + apply blast + done + +(** iter **) + +lemma (in Semilat) stable_pres_lemma: +shows "\pres_type step n A; bounded step n; + ss \ list n A; p \ w; \q\w. q < n; + \q. q < n \ q \ w \ stable r step ss q; q < n; + \s'. (q,s') \ set (step p (ss ! p)) \ s' +_f ss ! q = ss ! q; + q \ w \ q = p \ + \ stable r step (merges f (step p (ss!p)) ss) q" + apply (unfold stable_def) + apply (subgoal_tac "\s'. (q,s') \ set (step p (ss!p)) \ s' : A") + prefer 2 + apply clarify + apply (erule pres_typeD) + prefer 3 apply assumption + apply (rule listE_nth_in) + apply assumption + apply simp + apply simp + apply simp + apply clarify + apply (subst nth_merges) + apply simp + apply (blast dest: boundedD) + apply assumption + apply clarify + apply (rule conjI) + apply (blast dest: boundedD) + apply (erule pres_typeD) + prefer 3 apply assumption + apply simp + apply simp +apply(subgoal_tac "q < length ss") +prefer 2 apply simp + apply (frule nth_merges [of q _ _ "step p (ss!p)"]) (* fixme: why does method subst not work?? *) +apply assumption + apply clarify + apply (rule conjI) + apply (blast dest: boundedD) + apply (erule pres_typeD) + prefer 3 apply assumption + apply simp + apply simp + apply (drule_tac P = "\x. (a, b) \ set (step q x)" in subst) + apply assumption + + apply (simp add: plusplus_empty) + apply (cases "q \ w") + apply simp + apply (rule ub1') + apply (rule semilat) + apply clarify + apply (rule pres_typeD) + apply assumption + prefer 3 apply assumption + apply (blast intro: listE_nth_in dest: boundedD) + apply (blast intro: pres_typeD dest: boundedD) + apply (blast intro: listE_nth_in dest: boundedD) + apply assumption + + apply simp + apply (erule allE, erule impE, assumption, erule impE, assumption) + apply (rule order_trans) + apply simp + defer + apply (rule pp_ub2)(* + apply assumption*) + apply simp + apply clarify + apply simp + apply (rule pres_typeD) + apply assumption + prefer 3 apply assumption + apply (blast intro: listE_nth_in dest: boundedD) + apply (blast intro: pres_typeD dest: boundedD) + apply (blast intro: listE_nth_in dest: boundedD) + apply blast + done + + +lemma (in Semilat) merges_bounded_lemma: + "\ mono r step n A; bounded step n; + \(p',s') \ set (step p (ss!p)). s' \ A; ss \ list n A; ts \ list n A; p < n; + ss <=[r] ts; \p. p < n \ stable r step ts p \ + \ merges f (step p (ss!p)) ss <=[r] ts" + apply (unfold stable_def) + apply (rule merges_pres_le_ub) + apply simp + apply simp + prefer 2 apply assumption + + apply clarsimp + apply (drule boundedD, assumption+) + apply (erule allE, erule impE, assumption) + apply (drule bspec, assumption) + apply simp + + apply (drule monoD [of _ _ _ _ p "ss!p" "ts!p"]) + apply assumption + apply simp + apply (simp add: le_listD) + + apply (drule lesub_step_typeD, assumption) + apply clarify + apply (drule bspec, assumption) + apply simp + apply (blast intro: order_trans) + done + +lemma termination_lemma: + assumes semilat: "semilat (A, r, f)" + shows "\ ss \ list n A; \(q,t)\set qs. q t\A; p\w \ \ + ss <[r] merges f qs ss \ + merges f qs ss = ss \ {q. \t. (q,t)\set qs \ t +_f ss!q \ ss!q} Un (w-{p}) < w" (is "PROP ?P") +proof - + interpret Semilat A r f using assms by (rule Semilat.intro) + show "PROP ?P" apply(insert semilat) + apply (unfold lesssub_def) + apply (simp (no_asm_simp) add: merges_incr) + apply (rule impI) + apply (rule merges_same_conv [THEN iffD1, elim_format]) + apply assumption+ + defer + apply (rule sym, assumption) + defer apply simp + apply (subgoal_tac "\q t. \((q, t) \ set qs \ t +_f ss ! q \ ss ! q)") + apply (blast intro!: psubsetI elim: equalityE) + apply clarsimp + apply (drule bspec, assumption) + apply (drule bspec, assumption) + apply clarsimp + done +qed + +lemma iter_properties[rule_format]: + assumes semilat: "semilat (A, r, f)" + shows "\ acc r ; pres_type step n A; mono r step n A; + bounded step n; \p\w0. p < n; ss0 \ list n A; + \p w0 \ stable r step ss0 p \ \ + iter f step ss0 w0 = (ss',w') + \ + ss' \ list n A \ stables r step ss' \ ss0 <=[r] ss' \ + (\ts\list n A. ss0 <=[r] ts \ stables r step ts \ ss' <=[r] ts)" + (is "PROP ?P") +proof - + interpret Semilat A r f using assms by (rule Semilat.intro) + show "PROP ?P" apply(insert semilat) +apply (unfold iter_def stables_def) +apply (rule_tac P = "%(ss,w). + ss \ list n A \ (\p w \ stable r step ss p) \ ss0 <=[r] ss \ + (\ts\list n A. ss0 <=[r] ts \ stables r step ts \ ss <=[r] ts) \ + (\p\w. p < n)" and + r = "{(ss',ss) . ss <[r] ss'} <*lex*> finite_psubset" + in while_rule) + +-- "Invariant holds initially:" +apply (simp add:stables_def) + +-- "Invariant is preserved:" +apply(simp add: stables_def split_paired_all) +apply(rename_tac ss w) +apply(subgoal_tac "(SOME p. p \ w) \ w") + prefer 2; apply (fast intro: someI) +apply(subgoal_tac "\(q,t) \ set (step (SOME p. p \ w) (ss ! (SOME p. p \ w))). q < length ss \ t \ A") + prefer 2 + apply clarify + apply (rule conjI) + apply(clarsimp, blast dest!: boundedD) + apply (erule pres_typeD) + prefer 3 + apply assumption + apply (erule listE_nth_in) + apply simp + apply simp +apply (subst decomp_propa) + apply fast +apply simp +apply (rule conjI) + apply (rule merges_preserves_type) + apply blast + apply clarify + apply (rule conjI) + apply(clarsimp, fast dest!: boundedD) + apply (erule pres_typeD) + prefer 3 + apply assumption + apply (erule listE_nth_in) + apply blast + apply blast +apply (rule conjI) + apply clarify + apply (blast intro!: stable_pres_lemma) +apply (rule conjI) + apply (blast intro!: merges_incr intro: le_list_trans) +apply (rule conjI) + apply clarsimp + apply (blast intro!: merges_bounded_lemma) +apply (blast dest!: boundedD) + + +-- "Postcondition holds upon termination:" +apply(clarsimp simp add: stables_def split_paired_all) + +-- "Well-foundedness of the termination relation:" +apply (rule wf_lex_prod) + apply (insert orderI [THEN acc_le_listI]) + apply (simp add: acc_def lesssub_def wfP_wf_eq [symmetric]) +apply (rule wf_finite_psubset) + +-- "Loop decreases along termination relation:" +apply(simp add: stables_def split_paired_all) +apply(rename_tac ss w) +apply(subgoal_tac "(SOME p. p \ w) \ w") + prefer 2; apply (fast intro: someI) +apply(subgoal_tac "\(q,t) \ set (step (SOME p. p \ w) (ss ! (SOME p. p \ w))). q < length ss \ t \ A") + prefer 2 + apply clarify + apply (rule conjI) + apply(clarsimp, blast dest!: boundedD) + apply (erule pres_typeD) + prefer 3 + apply assumption + apply (erule listE_nth_in) + apply blast + apply blast +apply (subst decomp_propa) + apply blast +apply clarify +apply (simp del: listE_length + add: lex_prod_def finite_psubset_def + bounded_nat_set_is_finite) +apply (rule termination_lemma) +apply assumption+ +defer +apply assumption +apply clarsimp +done + +qed + +lemma kildall_properties: +assumes semilat: "semilat (A, r, f)" +shows "\ acc r; pres_type step n A; mono r step n A; + bounded step n; ss0 \ list n A \ \ + kildall r f step ss0 \ list n A \ + stables r step (kildall r f step ss0) \ + ss0 <=[r] kildall r f step ss0 \ + (\ts\list n A. ss0 <=[r] ts \ stables r step ts \ + kildall r f step ss0 <=[r] ts)" + (is "PROP ?P") +proof - + interpret Semilat A r f using assms by (rule Semilat.intro) + show "PROP ?P" +apply (unfold kildall_def) +apply(case_tac "iter f step ss0 (unstables r step ss0)") +apply(simp) +apply (rule iter_properties) +apply (simp_all add: unstables_def stable_def) +apply (rule semilat) +done +qed + +lemma is_bcv_kildall: +assumes semilat: "semilat (A, r, f)" +shows "\ acc r; top r T; pres_type step n A; bounded step n; mono r step n A \ + \ is_bcv r T step n A (kildall r f step)" + (is "PROP ?P") +proof - + interpret Semilat A r f using assms by (rule Semilat.intro) + show "PROP ?P" +apply(unfold is_bcv_def wt_step_def) +apply(insert semilat kildall_properties[of A]) +apply(simp add:stables_def) +apply clarify +apply(subgoal_tac "kildall r f step ss \ list n A") + prefer 2 apply (simp(no_asm_simp)) +apply (rule iffI) + apply (rule_tac x = "kildall r f step ss" in bexI) + apply (rule conjI) + apply (blast) + apply (simp (no_asm_simp)) + apply(assumption) +apply clarify +apply(subgoal_tac "kildall r f step ss!p <=_r ts!p") + apply simp +apply (blast intro!: le_listD less_lengthI) +done +qed + +end