diff -r 6a973bd43949 -r 1bc3b688548c src/HOL/MicroJava/DFA/Product.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/MicroJava/DFA/Product.thy Tue Nov 24 14:37:23 2009 +0100 @@ -0,0 +1,141 @@ +(* Title: HOL/MicroJava/BV/Product.thy + Author: Tobias Nipkow + Copyright 2000 TUM +*) + +header {* \isaheader{Products as Semilattices} *} + +theory Product +imports Err +begin + +constdefs + le :: "'a ord \ 'b ord \ ('a * 'b) ord" +"le rA rB == %(a,b) (a',b'). a <=_rA a' & b <=_rB b'" + + sup :: "'a ebinop \ 'b ebinop \ ('a * 'b)ebinop" +"sup f g == %(a1,b1)(a2,b2). Err.sup Pair (a1 +_f a2) (b1 +_g b2)" + + esl :: "'a esl \ 'b esl \ ('a * 'b ) esl" +"esl == %(A,rA,fA) (B,rB,fB). (A <*> B, le rA rB, sup fA fB)" + +syntax "@lesubprod" :: "'a*'b \ 'a ord \ 'b ord \ 'b \ bool" + ("(_ /<='(_,_') _)" [50, 0, 0, 51] 50) +translations "p <=(rA,rB) q" == "p <=_(Product.le rA rB) q" + +lemma unfold_lesub_prod: + "p <=(rA,rB) q == le rA rB p q" + by (simp add: lesub_def) + +lemma le_prod_Pair_conv [iff]: + "((a1,b1) <=(rA,rB) (a2,b2)) = (a1 <=_rA a2 & b1 <=_rB b2)" + by (simp add: lesub_def le_def) + +lemma less_prod_Pair_conv: + "((a1,b1) <_(Product.le rA rB) (a2,b2)) = + (a1 <_rA a2 & b1 <=_rB b2 | a1 <=_rA a2 & b1 <_rB b2)" +apply (unfold lesssub_def) +apply simp +apply blast +done + +lemma order_le_prod [iff]: + "order(Product.le rA rB) = (order rA & order rB)" +apply (unfold Semilat.order_def) +apply simp +apply blast +done + +lemma acc_le_prodI [intro!]: + "\ acc r\<^isub>A; acc r\<^isub>B \ \ acc(Product.le r\<^isub>A r\<^isub>B)" +apply (unfold acc_def) +apply (rule wf_subset) + apply (erule wf_lex_prod) + apply assumption +apply (auto simp add: lesssub_def less_prod_Pair_conv lex_prod_def) +done + +lemma closed_lift2_sup: + "\ closed (err A) (lift2 f); closed (err B) (lift2 g) \ \ + closed (err(A<*>B)) (lift2(sup f g))"; +apply (unfold closed_def plussub_def lift2_def err_def sup_def) +apply (simp split: err.split) +apply blast +done + +lemma unfold_plussub_lift2: + "e1 +_(lift2 f) e2 == lift2 f e1 e2" + by (simp add: plussub_def) + + +lemma plus_eq_Err_conv [simp]: + assumes "x:A" and "y:A" + and "semilat(err A, Err.le r, lift2 f)" + shows "(x +_f y = Err) = (~(? z:A. x <=_r z & y <=_r z))" +proof - + have plus_le_conv2: + "\r f z. \ z : err A; semilat (err A, r, f); OK x : err A; OK y : err A; + OK x +_f OK y <=_r z\ \ OK x <=_r z \ OK y <=_r z" + by (rule Semilat.plus_le_conv [OF Semilat.intro, THEN iffD1]) + from prems show ?thesis + apply (rule_tac iffI) + apply clarify + apply (drule OK_le_err_OK [THEN iffD2]) + apply (drule OK_le_err_OK [THEN iffD2]) + apply (drule Semilat.lub [OF Semilat.intro, of _ _ _ "OK x" _ "OK y"]) + apply assumption + apply assumption + apply simp + apply simp + apply simp + apply simp + apply (case_tac "x +_f y") + apply assumption + apply (rename_tac "z") + apply (subgoal_tac "OK z: err A") + apply (frule plus_le_conv2) + apply assumption + apply simp + apply blast + apply simp + apply (blast dest: Semilat.orderI [OF Semilat.intro] order_refl) + apply blast + apply (erule subst) + apply (unfold semilat_def err_def closed_def) + apply simp + done +qed + +lemma err_semilat_Product_esl: + "\L1 L2. \ err_semilat L1; err_semilat L2 \ \ err_semilat(Product.esl L1 L2)" +apply (unfold esl_def Err.sl_def) +apply (simp (no_asm_simp) only: split_tupled_all) +apply simp +apply (simp (no_asm) only: semilat_Def) +apply (simp (no_asm_simp) only: Semilat.closedI [OF Semilat.intro] closed_lift2_sup) +apply (simp (no_asm) only: unfold_lesub_err Err.le_def unfold_plussub_lift2 sup_def) +apply (auto elim: semilat_le_err_OK1 semilat_le_err_OK2 + simp add: lift2_def split: err.split) +apply (blast dest: Semilat.orderI [OF Semilat.intro]) +apply (blast dest: Semilat.orderI [OF Semilat.intro]) + +apply (rule OK_le_err_OK [THEN iffD1]) +apply (erule subst, subst OK_lift2_OK [symmetric], rule Semilat.lub [OF Semilat.intro]) +apply simp +apply simp +apply simp +apply simp +apply simp +apply simp + +apply (rule OK_le_err_OK [THEN iffD1]) +apply (erule subst, subst OK_lift2_OK [symmetric], rule Semilat.lub [OF Semilat.intro]) +apply simp +apply simp +apply simp +apply simp +apply simp +apply simp +done + +end