diff -r 6a973bd43949 -r 1bc3b688548c src/HOL/MicroJava/DFA/SemilatAlg.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/MicroJava/DFA/SemilatAlg.thy Tue Nov 24 14:37:23 2009 +0100 @@ -0,0 +1,186 @@ +(* Title: HOL/MicroJava/BV/SemilatAlg.thy + Author: Gerwin Klein + Copyright 2002 Technische Universitaet Muenchen +*) + +header {* \isaheader{More on Semilattices} *} + +theory SemilatAlg +imports Typing_Framework Product +begin + +constdefs + lesubstep_type :: "(nat \ 's) list \ 's ord \ (nat \ 's) list \ bool" + ("(_ /<=|_| _)" [50, 0, 51] 50) + "x <=|r| y \ \(p,s) \ set x. \s'. (p,s') \ set y \ s <=_r s'" + +consts + "@plusplussub" :: "'a list \ ('a \ 'a \ 'a) \ 'a \ 'a" ("(_ /++'__ _)" [65, 1000, 66] 65) +primrec + "[] ++_f y = y" + "(x#xs) ++_f y = xs ++_f (x +_f y)" + +constdefs + bounded :: "'s step_type \ nat \ bool" +"bounded step n == !p nat \ 's set \ bool" +"pres_type step n A == \s\A. \p(q,s')\set (step p s). s' \ A" + + mono :: "'s ord \ 's step_type \ nat \ 's set \ bool" +"mono r step n A == + \s p t. s \ A \ p < n \ s <=_r t \ step p s <=|r| step p t" + + +lemma pres_typeD: + "\ pres_type step n A; s\A; pset (step p s) \ \ s' \ A" + by (unfold pres_type_def, blast) + +lemma monoD: + "\ mono r step n A; p < n; s\A; s <=_r t \ \ step p s <=|r| step p t" + by (unfold mono_def, blast) + +lemma boundedD: + "\ bounded step n; p < n; (q,t) : set (step p xs) \ \ q < n" + by (unfold bounded_def, blast) + +lemma lesubstep_type_refl [simp, intro]: + "(\x. x <=_r x) \ x <=|r| x" + by (unfold lesubstep_type_def) auto + +lemma lesub_step_typeD: + "a <=|r| b \ (x,y) \ set a \ \y'. (x, y') \ set b \ y <=_r y'" + by (unfold lesubstep_type_def) blast + + +lemma list_update_le_listI [rule_format]: + "set xs <= A \ set ys <= A \ xs <=[r] ys \ p < size xs \ + x <=_r ys!p \ semilat(A,r,f) \ x\A \ + xs[p := x +_f xs!p] <=[r] ys" + apply (unfold Listn.le_def lesub_def semilat_def) + apply (simp add: list_all2_conv_all_nth nth_list_update) + done + + +lemma plusplus_closed: assumes "semilat (A, r, f)" shows + "\y. \ set x \ A; y \ A\ \ x ++_f y \ A" (is "PROP ?P") +proof - + interpret Semilat A r f using assms by (rule Semilat.intro) + show "PROP ?P" proof (induct x) + show "\y. y \ A \ [] ++_f y \ A" by simp + fix y x xs + assume y: "y \ A" and xs: "set (x#xs) \ A" + assume IH: "\y. \ set xs \ A; y \ A\ \ xs ++_f y \ A" + from xs obtain x: "x \ A" and xs': "set xs \ A" by simp + from x y have "(x +_f y) \ A" .. + with xs' have "xs ++_f (x +_f y) \ A" by (rule IH) + thus "(x#xs) ++_f y \ A" by simp + qed +qed + +lemma (in Semilat) pp_ub2: + "\y. \ set x \ A; y \ A\ \ y <=_r x ++_f y" +proof (induct x) + from semilat show "\y. y <=_r [] ++_f y" by simp + + fix y a l + assume y: "y \ A" + assume "set (a#l) \ A" + then obtain a: "a \ A" and x: "set l \ A" by simp + assume "\y. \set l \ A; y \ A\ \ y <=_r l ++_f y" + hence IH: "\y. y \ A \ y <=_r l ++_f y" using x . + + from a y have "y <=_r a +_f y" .. + also from a y have "a +_f y \ A" .. + hence "(a +_f y) <=_r l ++_f (a +_f y)" by (rule IH) + finally have "y <=_r l ++_f (a +_f y)" . + thus "y <=_r (a#l) ++_f y" by simp +qed + + +lemma (in Semilat) pp_ub1: +shows "\y. \set ls \ A; y \ A; x \ set ls\ \ x <=_r ls ++_f y" +proof (induct ls) + show "\y. x \ set [] \ x <=_r [] ++_f y" by simp + + fix y s ls + assume "set (s#ls) \ A" + then obtain s: "s \ A" and ls: "set ls \ A" by simp + assume y: "y \ A" + + assume + "\y. \set ls \ A; y \ A; x \ set ls\ \ x <=_r ls ++_f y" + hence IH: "\y. x \ set ls \ y \ A \ x <=_r ls ++_f y" using ls . + + assume "x \ set (s#ls)" + then obtain xls: "x = s \ x \ set ls" by simp + moreover { + assume xs: "x = s" + from s y have "s <=_r s +_f y" .. + also from s y have "s +_f y \ A" .. + with ls have "(s +_f y) <=_r ls ++_f (s +_f y)" by (rule pp_ub2) + finally have "s <=_r ls ++_f (s +_f y)" . + with xs have "x <=_r ls ++_f (s +_f y)" by simp + } + moreover { + assume "x \ set ls" + hence "\y. y \ A \ x <=_r ls ++_f y" by (rule IH) + moreover from s y have "s +_f y \ A" .. + ultimately have "x <=_r ls ++_f (s +_f y)" . + } + ultimately + have "x <=_r ls ++_f (s +_f y)" by blast + thus "x <=_r (s#ls) ++_f y" by simp +qed + + +lemma (in Semilat) pp_lub: + assumes z: "z \ A" + shows + "\y. y \ A \ set xs \ A \ \x \ set xs. x <=_r z \ y <=_r z \ xs ++_f y <=_r z" +proof (induct xs) + fix y assume "y <=_r z" thus "[] ++_f y <=_r z" by simp +next + fix y l ls assume y: "y \ A" and "set (l#ls) \ A" + then obtain l: "l \ A" and ls: "set ls \ A" by auto + assume "\x \ set (l#ls). x <=_r z" + then obtain lz: "l <=_r z" and lsz: "\x \ set ls. x <=_r z" by auto + assume "y <=_r z" with lz have "l +_f y <=_r z" using l y z .. + moreover + from l y have "l +_f y \ A" .. + moreover + assume "\y. y \ A \ set ls \ A \ \x \ set ls. x <=_r z \ y <=_r z + \ ls ++_f y <=_r z" + ultimately + have "ls ++_f (l +_f y) <=_r z" using ls lsz by - + thus "(l#ls) ++_f y <=_r z" by simp +qed + + +lemma ub1': + assumes "semilat (A, r, f)" + shows "\\(p,s) \ set S. s \ A; y \ A; (a,b) \ set S\ + \ b <=_r map snd [(p', t')\S. p' = a] ++_f y" +proof - + interpret Semilat A r f using assms by (rule Semilat.intro) + + let "b <=_r ?map ++_f y" = ?thesis + + assume "y \ A" + moreover + assume "\(p,s) \ set S. s \ A" + hence "set ?map \ A" by auto + moreover + assume "(a,b) \ set S" + hence "b \ set ?map" by (induct S, auto) + ultimately + show ?thesis by - (rule pp_ub1) +qed + + +lemma plusplus_empty: + "\s'. (q, s') \ set S \ s' +_f ss ! q = ss ! q \ + (map snd [(p', t') \ S. p' = q] ++_f ss ! q) = ss ! q" + by (induct S) auto + +end