diff -r bb20f11dd842 -r 1bf7b186542e src/HOL/Number_Theory/Euclidean_Algorithm.thy --- a/src/HOL/Number_Theory/Euclidean_Algorithm.thy Mon Nov 09 13:49:56 2015 +0100 +++ b/src/HOL/Number_Theory/Euclidean_Algorithm.thy Mon Nov 09 15:48:17 2015 +0100 @@ -238,7 +238,7 @@ shows "c = gcd a b" by (rule associated_eqI) (auto simp: assms intro: gcd_greatest) -sublocale gcd!: abel_semigroup gcd +sublocale gcd: abel_semigroup gcd proof fix a b c show "gcd (gcd a b) c = gcd a (gcd b c)" @@ -790,7 +790,7 @@ shows "c = lcm a b" by (rule associated_eqI) (auto simp: assms intro: lcm_least) -sublocale lcm!: abel_semigroup lcm .. +sublocale lcm: abel_semigroup lcm .. lemma dvd_lcm_D1: "lcm m n dvd k \ m dvd k"