diff -r dc429a5b13c4 -r 1c3f1f2431f9 src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Wed Mar 19 17:06:02 2014 +0000 +++ b/src/HOL/Finite_Set.thy Wed Mar 19 18:47:22 2014 +0100 @@ -1035,7 +1035,7 @@ lemma inf_INF_fold_inf: assumes "finite A" - shows "inf B (INFI A f) = fold (inf \ f) B A" (is "?inf = ?fold") + shows "inf B (INFIMUM A f) = fold (inf \ f) B A" (is "?inf = ?fold") proof (rule sym) interpret comp_fun_idem inf by (fact comp_fun_idem_inf) interpret comp_fun_idem "inf \ f" by (fact comp_comp_fun_idem) @@ -1046,7 +1046,7 @@ lemma sup_SUP_fold_sup: assumes "finite A" - shows "sup B (SUPR A f) = fold (sup \ f) B A" (is "?sup = ?fold") + shows "sup B (SUPREMUM A f) = fold (sup \ f) B A" (is "?sup = ?fold") proof (rule sym) interpret comp_fun_idem sup by (fact comp_fun_idem_sup) interpret comp_fun_idem "sup \ f" by (fact comp_comp_fun_idem) @@ -1057,12 +1057,12 @@ lemma INF_fold_inf: assumes "finite A" - shows "INFI A f = fold (inf \ f) top A" + shows "INFIMUM A f = fold (inf \ f) top A" using assms inf_INF_fold_inf [of A top] by simp lemma SUP_fold_sup: assumes "finite A" - shows "SUPR A f = fold (sup \ f) bot A" + shows "SUPREMUM A f = fold (sup \ f) bot A" using assms sup_SUP_fold_sup [of A bot] by simp end