diff -r dc429a5b13c4 -r 1c3f1f2431f9 src/HOL/GCD.thy --- a/src/HOL/GCD.thy Wed Mar 19 17:06:02 2014 +0000 +++ b/src/HOL/GCD.thy Wed Mar 19 18:47:22 2014 +0100 @@ -1558,8 +1558,8 @@ interpretation gcd_lcm_complete_lattice_nat: complete_lattice Gcd Lcm gcd Rings.dvd "\m n. m dvd n \ \ n dvd m" lcm 1 "0::nat" where - "Inf.INFI Gcd A f = Gcd (f ` A :: nat set)" - and "Sup.SUPR Lcm A f = Lcm (f ` A)" + "Inf.INFIMUM Gcd A f = Gcd (f ` A :: nat set)" + and "Sup.SUPREMUM Lcm A f = Lcm (f ` A)" proof - show "class.complete_lattice Gcd Lcm gcd Rings.dvd (\m n. m dvd n \ \ n dvd m) lcm 1 (0::nat)" proof @@ -1577,8 +1577,8 @@ qed then interpret gcd_lcm_complete_lattice_nat: complete_lattice Gcd Lcm gcd Rings.dvd "\m n. m dvd n \ \ n dvd m" lcm 1 "0::nat" . - from gcd_lcm_complete_lattice_nat.INF_def show "Inf.INFI Gcd A f = Gcd (f ` A)" . - from gcd_lcm_complete_lattice_nat.SUP_def show "Sup.SUPR Lcm A f = Lcm (f ` A)" . + from gcd_lcm_complete_lattice_nat.INF_def show "Inf.INFIMUM Gcd A f = Gcd (f ` A)" . + from gcd_lcm_complete_lattice_nat.SUP_def show "Sup.SUPREMUM Lcm A f = Lcm (f ` A)" . qed declare gcd_lcm_complete_lattice_nat.Inf_image_eq [simp del]