diff -r dc429a5b13c4 -r 1c3f1f2431f9 src/HOL/Lifting_Set.thy --- a/src/HOL/Lifting_Set.thy Wed Mar 19 17:06:02 2014 +0000 +++ b/src/HOL/Lifting_Set.thy Wed Mar 19 18:47:22 2014 +0100 @@ -150,12 +150,12 @@ unfolding rel_fun_def rel_set_def by fast lemma SUP_parametric [transfer_rule]: - "(rel_set R ===> (R ===> op =) ===> op =) SUPR (SUPR :: _ \ _ \ _::complete_lattice)" + "(rel_set R ===> (R ===> op =) ===> op =) SUPREMUM (SUPREMUM :: _ \ _ \ _::complete_lattice)" proof(rule rel_funI)+ fix A B f and g :: "'b \ 'c" assume AB: "rel_set R A B" and fg: "(R ===> op =) f g" - show "SUPR A f = SUPR B g" + show "SUPREMUM A f = SUPREMUM B g" by (rule SUP_eq) (auto 4 4 dest: rel_setD1 [OF AB] rel_setD2 [OF AB] rel_funD [OF fg] intro: rev_bexI) qed